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FOREWORD 
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General Dynamics Corporation.   Volume IV, Report No. C417-67-075, covers the 
period 1 July 1965 to 1 July 1966.   Electric Boat is prime contractor of the SUBIC 
(Submarine Integrated Control) Program under Office of Naval Research contract 
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is Project Manager for Electric Boat division under the direction of Dr. A. J. van 
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Introduction 

The standard detector that one considers for the underwater sound 

problem approximates a monotonic function of the likelihood ratio based on 

stationary Gaussian inputs when the input signal-to-noise ratio in each 

channel is small (locally optimum). Very often the variances of the noise 

processes are unknown but can be assumed to be stationary during the 

decision time (quasi-stationary). When this occurs, the detection threshold 

may be adjusted according to an estimate of the noise variance. It has 

been shown in Report No. 18 that this procedure is desired for CFAR 

detection and that for large arrays it costs very little in terms of 

detectability in the presence of Gaussian noise. 

It will now be shown that some nonparametric properties are obtained 

by this procedure. That is, the false-alarm rate can be fixed for any 

quasi-stationary input and for certain non-Gaussian inputs, of the impulse 

variety, the cost and hence the miss rate are reduced. 

II. Terminology 

We will assume a threshold, m-input, array detector of the following 

type. 

Filter ^ 

y2(t) 
Filter 

x0(t) 

L£1 Filter V*) 

Squarer Integrator Comparer 

— 1 

—• 0 

Figure 1 
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This represents the locally optintun detector (Report No. 10) for detecting 

a random signal that Is common to ro channels each containing stationary 

Gaussian noise processes that are statistically Identical but Independent. 

The filters are Identical Eckart-type filters with a transfer function 

p 
S(ü>)/N (to), where S((o} Is the signal spectrum and N((o) is the noise spectrum. 

The following assumptions will be made: 

1) The noise and signal processes which are the components of the 

vector x(t) have zero mean and normalized time correlation 

functions given by 

E[n.(t)n,(t + T)\ 

Pn(T) '    (   2     -) EVCtH 

E(s.(t) S.(t+T)| 
P8(T) o   I

1      *   > 

2) The decision time T, or integration time, is much larger than 

the effective width of p (t), so that the test statistic can be 

assumed to be normally distributed with negligible error. 

When the variance is unknown, the detector of Fig. 1 is to be modified 

in the following way. 

x(t) Z- Squarer Integrator 
S(x) 

Comparer 

> Squarer E — Integrator 
A(x 

1 

0 

t(x) 

Figure 2 
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This is the procedure used in Report No. 18 to obtain CFAR detection for 

Gaussian inputs with unknown variance. 

The false-alarm rate (a) of this detector is the probability given 

the hypothesis of no signal present that   S(x) > t(x) .    Since S(x) and 

t(x) can be assumed to be normally distributed with negligible error, it 

follows that r 

a ■ Protu 

or, conversely. 

{sec). t(x) > 0> Ä^    1-1 
- EJSCX)-t(x)} 
—f rwn ' 

VarHjs(3E)-t(x)| 

^k(^>^t Ejjkx)! + l^d-a) VarH|s(x)-t(5E) 
1/2 

(1) 

where ^ is the normalized Gaussian cumulative distribution function.    Since 

EjjtöCx)! - EjjKA^)-" Tmo     , where a     is the noise variance, it follows that 

the multiplier c should be 

[varH|s(x)-t(x)|] 
c   ^ 1 + (g^d-a) 

TmoL 
(2) 

As    c -H   asymptotically, it is sufficient that 

,1 [varH/s(x)-A(30l] 
1/2 

Tmo n 
(3) 

for the false-alarm rate to approach a   as T gets large.    The resulting 

error in a is of the same order of magnitude as that implied In assuming 

that S(x) and A(x) are normally distributed. 
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When the signal Is present, the shift In the test statistic S(x) is 

given by 

*K{SG)| - EH^} - Tm2o8
2 

where o. is the signal variance. The corresponding shift in t(x) is 
9 

hfa} - \^} ' ^s 
Thus for any   m > 2   the adaptive detector is consistent.    That is, the 

probability of detection (ß) approaches unity as T becomes large.   In order 

to calculate the cost of this procedure it is necessary to calculate the 

output signal-to-noise ratio of the detecWs, defined as 

standard       f 11/2        * 

and 

where 

and 

SNR 

SNR adaptive 

[var, S(3E)] 

VarJs(x)-t(x)| 

SG) 

ACS) 

m 

LhM 
o n 

T 

1-1 

dt 

t*i2v 
1-1 

dt 

t(x)-cA(x)     . 
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III.    Oat put Signal-to-Noise Ratio 

The following expression can be evaluated under the assumption of 

stationary noise: 

VarK S(x) ä aA^h ri + 26]+  amTo^l      , ($) 

where T 

/jE|n1
2(t)n1

2(e)-an
1*|dtdC 

Ö      l ^ ~ 1     , (6) V 2Tor n 

and where   h = 2/ 11 - =   Pn(^) *S   ^d i8 a measure of the "width" of the 
0 '^    n 2 

CT     h' 
normalized correlation function of the noise processes; and   6 - m —A — 

2 
where h" is sindlsr to h except that p    (€) is replaced by   p (K) pa(K) , 

The approximation of Eq. (!?) is a result of having dropped a 62 tern since 
2 

there is already an error of order 6   inherent in this analysis, as a 

result of assumption 2).    Note that the assumption   5 « 1   is also 

necessary for the standard array detector to approximate the optimum. 

This assumption is valid for many practical conditions. 

When the signal and noise processes have the same spectra, then   b'« h. 

For Gaussian inputs it is easily shown    that   \|r « o .    If the thresl old of 

the standard detector were based on Gaussian inputs, the presence of 

uncorrelated noise processes for which   \|f > 0   would increase the false- 

alarm rate.    It is conjectured that the class of processes for which   ^ > 0 

contains those processes which correspond to some impulse model.    Observe, 
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however, that the dependence of a on ^ Is small for large m (m » \|r) . 

The output signal-to-noise ratio for the standard detector and for small 6 

is given by 

SNR. standard 
1 

2h 

2 

m —w 
an 

Vi+26+m 
(7) 

For quasi-stationary inputs, one can show that for    6 « 1 , 

VarJs(x)-A(;)^ = 2m(m-l)Ta„l4h l+ZSzl 6 
m (8) 

It follows from Eqs.   (3) and (8) that for arbitrary quasi-stationary inputs, 

c = 1 + 
V    m 

IT r'a-v 
T 

(9) 

Therefore the adaptive detector is asymptotically nonparametric in that a 

approaches a constant (a ) as    T—►»   for any quasi-stationaiy input.    The 

rate of convergence is limited by the rate of convergence of the test 

statistics to the normal distribution.    In addition one would expect some 

improvement in detectability for non-Gaussian noise processes for which 

^ > 0 .    It can be shown that   VarK|s(x)-t(x)l differs from   VarK<S(x)-A(x)i 

only to order 6   provided T is sufficiently large so that    ß > 50 per cent. 

Therefore the output signal-to-noise ratio for the adaptive detector and for 

small 6 is 
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SNR adaptive (10) 

IV.    Coat of Adaptive Procedure 

Let us now equate the output signal-to-noise ratios of Eqs.  (7) and 

(10) by considering (m-x) channels for the standard detector and m channels 

for the adaptive detector.    Thus x Is defined as the cost In terns of 

number of channels for estimating the noise variance.    Solving for x yields 

x = m - m-\   1 
(l-t + l) (1-26) m 

m m 

(U) 

For large m this can be approximated by 

x—v| + (>ir-l)m •— ^+ 0 
0_2 h» 

"n    h 
m (12) 

Thus for very small input signal-to-noise ratios, Gaussian inputs, and large 

m, the cost Is approximately x channel (as shown in Report No. 18).   Let us 

now consider an example of a non-Gaussian noise input. 

Suppose the input noise consists of a process that has been obtained 

by squaring a Gaussian process with zero mean and then filtering out the 

d.c. term.   That Is, 

n(t) z2(t)-cTz
2 (13) 

where z(t) Is Gaussian with zero mean and variance o . It follows that 
z 

> 1 

n(t) has a zero mean and a variance of 2o . From Eq, (6) it is seen that 
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T 

I a2(t) - a*]  f«2(C)-o8
2)    - ha^\m. ds 

2Tof ^i n 

o L 
EizU(t)«U(ol - hah\zkit}z2iK) , + Ua Wz2(t)z2(C) • - cr 

2Torlih n 

T 

I 32o.8p2(t-0 + 2U<T V(t-C) z rz z rz dt dK 

- 1 

2Tan
U2j(l4)   P22(«)d« 

dt dz 

- 1 

; 

:: 

8j (1- ^-2—^6/(1-^^ 8/ (i.J)pa
ft(«)de f)p^)dc 

- 1 

2/(1- ^P^COd« 

X 

/ (l-l)pa
2wd« 

2 * U %• 

0 

Since p (5) is narrower than p (5), it follows that \|r > 6 , For example, 

if p(  ) is exponential, then pAs) « " P1,
2(2C) d? - w PB

2
(TI) dt) , and 

Z 8 8 e  ■ 

t ■ 10 . It is thus clear from Eq. (12) that for the input of this example 

x is negative and of the order of -U channels. That is, the adaptive 
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detector is more powerful than the standard detector.   This improvement 

In detection is significant for small to medium-sized arrays.    Furthermore, 

unless the array is large    (m »10) , there will be a significant error 

in the false-alarm rate of the standard detector. 

The process considered in this example has definite characteristics 

of Impulse noise.   The amplitude density has a large peak and a. slowly 

(relative to Gaussian) decreasing tail.   These characteristics would be 

exaggerated if we raised the original Gaussian process to a higher power 

than 2 and correspondingly \|r would increase further.   It is therefore 

conjectured that the adapted detector is more powerful than the standard 

detector when the Inputs in each channel are uncorrelated Impulse noise. 

This effoct is not great, however, for large arrays (m » U) . 

A-9 



aj^rv^Bf 

AN AUTOMATIC DECISION THRESHOLD FOR POLARITY COINCIDENCE ARRAYS 

by 

Morton Kanefsky- 

Progress Report No. 2k 

General Dynamics Electric Boat division 

(8050-33-55001) 

August 1965 

DEPARTMENT  OF  ENGINEERING 

AND APPLIED  SCIENCE 

YALE UNIVERSITY 



. 

This report considers the possibility of setting a detection 

threshold at each bearing angle for the polarity coincidence 

array.   An adaptive threshold employing the number of zero 

crossings of the hydrophone inputs is shown to greatly reduce 

the sensitivity of the false-alarm rate to the spectral 

properties of the noise.   The range of usefulness of this 

procedure is limited to the case when the self-noise of the 

hydrophones is such as to allow the inputs to be processed to 

at most 5 times the "nominal" or minimum cut-off frequency of 

the inputs.   The analysis assumes that, in the absence of a 

target, the hydrophone Inputs are all uncorrelc tad.   While 

this assumption is unreasonable for submarine arrays, it is 

conjectured that the adaptive procedure can be modified to 

work In an Isotropie noise field with unknown space-time 

correlation. 
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I. Introduction 

This report deals with the passive detection of a sonar target in the 

presence of a gaussian noise background whose spectral properties are 

unknown. It is common in sonar applications to display the output of 

some suitable approximation to the likelihood-ratio detector on a cathode 

ray screen and hava an observer raach a decision based on the difference 

between the on- and off-target detector outputs. Tliis procedure is often 

carried out in spite of the fact that the likelihood-ratio test is optimum 

only in the sense that a yes or no dscisicn is made at each bearing angle. 

There is of course no theory as i;o the optimum display, primarily because 

such a theory would involve the subjective nature of the operator. 

Psychological studies of man's decision-making capabilities are Just now 

beginning. The decision procedure is, however, not automated for a 

number of reasons. The primary reason is that the detectors are based 

on a greatly oversimplified model of the actual environmant and at the 

present time do not have the capabilities to distinguish between real and 

false targets that the operators seem to have, A seoondary reason Is 

that a complete statistical knowledge of the noise environment is not 

available, and the peripheral equipment and computers needed to measure 

all the necessary parameters are too costly and space-consuming. 

As the detectors become more sophisticated, the desirability of an 

automatic threshold decision made at each bearing angle increases. Some- 

times (if we are lucky) certain readily measurable properties of the noise 

environment contain a large amount of information in Just the right form 

to make an automatic adjustment with minimal peripheral equipment. For 

examplö, given a number of simplifying assumptions about the noise 
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environment, the threshold of a standard array detector can be fixed for 

non-gaussian noise as well as for gaussian noise simply by using an 

estimate of the noise variance to set the threshold.     This procedure 

assumes that, in the absence of a target, the inputs to the hydrophones 

are all uncorrelated and have the same known spectral shape.    Of course 

neither of these assumptions is valid and a realistic automatic threshold 

decision would have to take them into account. 

The main conjecture of this report is that the number of zero 

crossings contains a great deal of information about the space-tiro 

correlation of the noise environment and can sometimes be used to 

automatically adjust the decision threshold.   Such a procedure would 

probably require some additional processing, such as pre-filtering, but 

hopefully not an unreasonable amount.   One night even conjecture that 

this adaptive procedure could be nonparametric, i,e,, not require the 

gaussian assumption.   However, the analysis of this conjecture would 

require extensive experimentation.    This report is far from being a 

complete study of the problem} rather it presents an example of what 

can be done. 

Consider the use of'the Polarity Coincidence Array (PCA), i.e., the 

Dimus system, for detecting a single sonar target in the presence of an 

Isotropie, gaussian, low-pass noise field.   Furthermore, assume that in 

the absence of the target the hydrophone inputs are all uncorrelated. 

It will be shown later that this assumption, although reas enable in some U 

respects, is for the purposes of this study prohibitively inaccurate for 

See Report No. 23 for details. 
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feasible submarine arrays.   It is being made, however, to simplify the 

analysis and to show a possible use of the zero-crossing count.    The con- 

jecture is made that the PCA can be made adaptive relative to the spatial 

correlation by a similar suitable use of the zero-crossing count; however, 

this conjecture is not examined.    The method as well as the restrictiveness 

of such a procedure are partially indicated by the results presented here 

for the restricted set of conditions. 

It has been shown in Report No. 22 that for the conditions Just given 

the cost of clipping is small when the inputs are sampled rapidly, 

relative to the cut-off frequency of the noise spectrum.    This cost in 

terms of the input signal-to-noise power ratio is between 0.6 and 1.0 db, 

depending on the spectral shape.    The cost is small in view of the advan- 

tages of the PCA, which are (l) ease of implementation and (2) invariance 

with respect to a nonstationary noise power that varies slowly relative to 

the inverse bandwidth of the noise spectrum.    It was pointed out that in 

order to set the detection threshold it is necessary to have accurate 

knowledge of the noise spectrum, that is, of the cut-off frequency as well 

as the actual shape.    It will be demonstrated that an automatic decision 

threshold can be obtained by using the zero-crossing count in one or more 

of the hydrophone inputs.   This adaptive procedure requires some elementary 

pre-filtering.    Furthermore, this adjustment is not exact, and under 

certain conditions the false-alarm rate is appreciably different from the 

designed false-alarm rate.   However, in most cases the sensitivity of the 

false-alarm rate to the spectral shape is significantly reduced. 

B-3 
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II. Terminology 

Let us consider the polarity coincidence array detector shown in Fig, 1, 

which calculates the following test statistic; 

N f  M 

i=l j=l 

(1) 

The x.(t) are the M inputs to the hydrophones, T is the sampling interval, 

.„.        1 • £ > 0 
sgn (^;=   n!r<n   *   an^ ^ ^s ^e sarnple size.    This test statistic is 

compared with a threshold t, and the detector decides that the signal is 

present if   s ca ^^ * •   The false-alarm probability a is the probability 

that   s ca > *   given the hypothesis  (H) that the x.(t) are all independent 

gaussian noise processes with the same spectral shape.    For large sample 

sizes and a decision time (T) large compared with the inverse bandwidth 

of the noise spectrum, S       is approximately normally distributed.    Hence 

1 -^ 

- EJS    I H [ pcaj 

where J is the normalized gaussian cumulative distribution function, or 

(2) 

^^(vl^'^-^V^W • (3) 

From Report No. 22 [sqs.   (10),   (2?) and (31 )J    it follows that 

B-5 



■ 

and 

Var, H{Spcal"NT!(M-l) 
N 

1 + 4 E(l - i) ^ 
" k-i L 

Pn(kT) (5) 

where p (T) is the normalized correlation function of the noiae inputs. 

It is convenient to define an equivalent sample size N as 

eq 

T f s 

f          N           r       „        \2] 
i + 4E(1-l)^in"1 pn(^) > 

n k-i -' / _ 

(6) 

where f is the sampling rate (f = r 5 N = T f ) , It follows from the 

previous four equations that 

f T s | i + r^i-a)- 
f2(l-|) 

N. eq 

(7) 

The equivalent sample size is shown in Figs, 2 and 3 as a function of the 

sampling rate for a variety of spectral shapes  (See Appendix A).    It is 

observed that N     varies linearly viith the cut-off frequency of the 

spectrum (f ) and for fast sampling varies considerably with the actual 

shape of the spectrum.    Let us assume that the second break in the spectra 

shown in Fig. 3 corresponds to the frequency '.ange over which the input 

data is to be procsssed.    It follows from this figure that continuous 

The output signal-to-noise ratio of S       is proportional to  yu 

for independent samples and to VN    'for dependent samples; hence the 
terminology. eq 
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Operation    (f—*<*)   is approximately achieved for sampling rates that are 

at least five times the processing range.   It was seen in Report No. 22 

that these sampling rates are necessary to achieve the low cost of clipping. 

In the analysis that follows it will be assumed that the sampling rate is 

sufficiently fast so that N     is essentially equal to its asymptotic value. 

III.    An Adaptive Decision Threshold 

Let us now consider the following threshold: 

t« - f T y K-l i + Fa- O 
*(l-i)' 

K N(0) 
(8) 

where a   is the desired false-alarm probability, N(0) is the total number 

of zero crossings in a single channel during the decision time (or the 

average over more than one channel)) and K is a suitable constant to be 

determined.    The variance of t' is quite small for large but practical 

decision times.    In fact, the error in the false-alarm probability caused 

by assuming that t* is a constant     N(0) = N(0) ; the average number of 

zero crossings] vanishes asymptotically as   T—V<»   in much the same fashion 

as the error caused by the assumption that S       Is normally distributed. 

It is assumed that these errors are small for practical decision times. 

We will bypass this detail, however, by claiming that we are attempting 

to set the false-alarm probability asymptotically as the decision time 

increases (i.e., a learning procedure) and will consider only the error 

in the asymptotic false-alarm probability.    The actual asymptotic false- 

alarm probability (o) is obtained by equating t of Eq.   (7) to t' of Eq.  (8) 

and replacing N(0) by N(o}, resulting in 
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K N(0) 
(9) 

We «ill now discuss the reasoning behind using t1 as a detection threshold. 

The well-known expression for the average number of zero crossings is [l] 

-lV2 

j f2 S(f) df 

N(0) =» 2T 

J S(f) df 
0 

(10) 

where S(f) is the spectral shape of the noise inputs. Let us assume that 

S(f) can be written in polynomial form and that there exists a first break 

f 
point in the spectrum denoted by f.. If we set TT- » x , we can write 

1 l1 

1/2 

N(0) - 2Tf- 

/ 
x^ S(x) dx 

js(x) dx 
0 

(11) 

This expression can be readily evaluated for a variety of low-pass spectral 

shapes (See Appendix B). Recall [l] that for a "single-pole" spectrum, 

N(0) • • , and our system obviously fails (a—»■JJO per cent). We will 

assume that there is a processing filter somewhere (maybe the hydrophones 

themselves ) that prevents this possibility. 

Figure U is a plot of N(0) versus N  (large sampling rates) for a 
eq 

variety of spectral shapes that can be obtained by passing white noise 

through a low-pass filter having no zeros and only real poles. For these 

B-10 
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spectra the following conclusions can be reached. For spectra that fall 

off sharply S(f) 1 ii) 
5n ; n > 3 , there is very nearly a linear 

relationship between N  and N(OJ. For spectra that fall off slowly but 
eq 

N 
are then cut off sharply at some frequency f- > f. , the  2£L curve 

has the same linear relationship for £„ < 2f  and falls off somewhat 

for larger fg. 

It follox^s that we should pre-filter the noise inputs with a filter 

having the transfer function 

H(jco) - 
H 

1 + 
'Jco 
CO, 

1 (12) 

where uu is equal to the processing frequency in radians. The constant K 

needed for the decision threshold JEq. (8)1 is seen from Fig. U to be 

2.7UO . If the noise spectrum begins to fall off slowly at some frequency 

f. considerably less than f,» then there trill be an error in the asymptotic 

false-alarm probability given fay Eq, (9). This error will be examined in 

more detail in the next section. In addition to the spectra indicated in 

Flg. U,  the presence of zeros in the spectrum (filter transfer function) 

will also be analyzed (spectra restricted to be monotonically decreasing). 

It is conjectured that the suboptimum PCA discussed in Report No. 22 

will behave similarly with respect to the adaptive threshold and in fact 

be somewhat better for large arrays. This conjecture is based on the 

fact that N  of the suooptimum device has a larger relative increase thaa 
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the optimum PGA as the noise inputs, prior to processing, vary from white 

to one having a single-tuned spectrum.   It follows that   the contours of 

Fig. k will probably be even closer to a straight line for the suboptirauin 

PGA. 

IV.    Error in Asymptotic False-Alarm Probability 

The actual asymptotic false-alarm probability can be determined from 

the designed false-alarm probability a   and Eq.  (9) using Fig. k (or the 

data in the appendices).    It will be assumed that the input data are 

processed according to the previous section.    The false-alarm rate is 

shown in Fig. 5 for a variety of spectral shapes and a designed false-alarm 

rate of 1 per cent.    The abscissa is   f-j/f? > where f. is the cut-off 

frequency of the noise spectrum and f„ is the processing frequency.   As 

indicated previously, the only difficulty arises when the noise spectrum 

falls off slowly and is significantly reduced by the time the processing 

frequency is reached.    The least favorable case ("single-pole" spectrum) 

Is shown again in Fig. 6 for different designed false-alarm rates. 

Thus we see that some knowledge of the spectral shape is necessaiy 

for an accurate setting of the false-alarm probability.    Suppose for 

instance that we know that the spectral shape is always flat 

feMzMJ    <   0.2 
S(0) 

'    below some frequency f_.    The maximum error in a 

caused by processing the inputs out to   f« a Sf-,    can be obtained from 

Fig. 6 for the value   f-i/fp s O.I* .   This is quite a reasonable maximum 

error.    Sometimes one has some other specific knowledge of the noise 

spectrum that enables one to make an alternate setting of the threshold. 

Consider the following example. 
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Let us suppose that the spectrum commonly appears to be "single-tuned" 

with the cut-off frequency in the vicinity of 1250 cps. Furthermore, let 

us assume that the self-noise of the hydrophones is such that processing 

out to $ kc seems reasonable« Finally assume that the noise spectrum 

never falls off faster than 12 db/octave. We wish to set the false-alarm 

probability automatically in such a way that gross errors do not occur 

for noise spectra other than the nominal one. We therefore process out 

to 5 kc and set the threshold to give no error for the nominal spectrum 

(K - 2.U4I) . The resulting actual false-alarm probability is shown in 

Fig. 7 for a designed false-alarm rate of 1 per cent. Included in this 

figure is the actual false-alarm rate for the non-adaptive detector whose 

threshold is based on the nominal spectrum. We can reach the following 

conclusions. 

For the non-adaptive detector, the uncertainty in the spectral shape 

causes a possible variation in a of 5 db. A  similar variation is caused 

by a 20 per cent uncertainty in the cut-off frequency (l kc < f 1 < 1.5 kc) . 

For these uncer&ainties in the spectral shape, the threshold of the non- 

adaptive detector can be set to guarantee a maximum error in a that is 

less than + 5 db. However, the threshold of the adaptive detector can 

be set to reduce the maximum error in a to i 0,7 db for the same 

uncertainty in the spectrum. Figure 8 is a similar plot with the only 

difference being that the inputs are processed only out to the nominal 

cut-off frequency. With this type of processing the false-alarm rate 

becomes relatively insensitive to the spectral shape. As a result the 

non-adaptive detector threshold can be adjusted to guarantee a maximum 
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error in a of only t 1,5 db for a 20 per cent uncertainty in the cut-off 

frequency.    On the other hand, the adaptive detector introduces virtually 

no error for this type of processing. 

V.    The Effect of White Self-Noise 

Finally we will consider, in a limited way, the effect of allowing 

a zero in the spectrum.   More specifically we will consider a spectrum 

of the following type; 

1 + 1 2 

1 + • ̂ l2 
1 + 

T2 

S(f) 

where   f-j/f, < 1   and   f /f2 < 1 .    Hence f.  is still the first break 

point in the spectrum.    This spectrum can alternatively be written as 

(13) 

S(f) 1 

^ 

(1U) 

lU \ 

where q is a constant equal to 

-^ 

T\ Thus, if the second term 

is regarded as the processing filter, the zero of the spectrum corresponds 

to a minimum level in the noise power spectrum.    Small values of q would 

always be present as a result of the self-noise generated in the hydrophones. 

In fact, in the absence of specific knowledge of the signal spectrum, the 

inputs are normally processed out to some frequency determined by this 

self-noise (f- < f_) in the hope that the signal spectrum is similar V 

the incoming noise spectrum. 

I 
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Let us now astaune that the adaptive threshold is adjusted under the 

assumption that the noise spectrum Is white (prior to the processing 

filter) or K - 2.3h55 .   The actual false-alarm rate (a - 1 per cent) o 
is shown in Fig. 9 for a number of locations of the pole where the 

abscissa represents the location of the zero.   For small values of self- 

noise   fc/f. small) , the spectrum falls off at a rate slightly less than 

6 db/octave, and hence the error in a increases.   Since the threshold was 

designed to give no error for white noise, the error starts to decrease 

when the self-noise becomes dominant in the vicinity of the processing 

frequency.    Both effects will be far less noticeable for spectra that fall 

off faster than 6 db/octave.   No analysis has been made for higher-order 

zeros or for a simple zero where     f-i/f* >  1    (Spectrum increasing in 

some frequency range). 

Let us re-examine our last example (nominal cut-off frequency of 

12$0 eps).    Let us now assume a self-noise -20 db that of the low-frequency 

noise.   Since the spectrum can fall off as fast as 12 db/octave, it seems 

reasonable to process out to <> kc.   Figure 9 tells us    (f-i/fo " 0»25 > 

f./f. ■ ,1)   that for the assumed spectral shape the false-alarm rate is 

increased by less than 1 db.   For sharper spectra this increase is smaller. 

It follows that the previous decision to set the threshold for the nominal 

spectrum (no white noise) is about right.    This will Insure a maximum error 

in the false-alarm rate of about t 1 db within the tolerance limits. 

It appears that whether we are setting the threshold on the basis of 

some lowest cut-off frequency or some nominal cut-off frequency, the 

adaptive procedure works well for processing frequencies as large as k 

tines the nominal (lowest) cut-off frequency.   For reasonable amounts of 
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eq 

(16) 

M 
where   R - - ^   ^ - H^ sin    [p (kd)     , and N»   is somewhat smaller than 

k-1 

N     as a result of the spatial correlation.   We wish to indicate that the 

assumption of statistical independence (R =» 0) Is prohibitively Inaccurate 

for feasible submarine arrays, at least as far as setting a detection 

threshold is concerned.    To do this we assume that N'   can be accurately eq 
determined (say, by the zero-crossing count).    It can easily be seen that 

the error in the false-alarm rate, due to   R / 0 , can be calculated from 

:: 

self-noise, there does not appear to be much advantage anyway in processing 

to sane higher frequency.    In fact it is the presence of self-noise that 

. 
makes the adaptive system work.    For with extremely small amounts of self- 

noise, one should process the inputs to some relatively high frequency. 

If one processes to some frequency   f2 > 10 f..  , then the adaptive 

detector is no better than the non-adaptive detector, 

VI.    On the Assumption of Uncorrelated Hydrophone Inputs 

Let us assume a linear array of hydrophones.    The mean of the FCA 

detector output is given by 

^(v)-*!^^ (1-5,sin'1M'd,]| ' ^ 

where p (d) is the normalized spatial correlation between two hydrophones 

spaced d feet apart.   It follows that the threshold [Eq.  (7 )J should be 

modified to be 

: 
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l"1(l-a)-f1(l-ao)- 
2(1 -i) 

(17) 

Let us now place the hydrophones sufficiently far apart so that the 

error in a caused by the spatial correlation is "only" +3 db for a designed 

false-alarm rate (a ) of 1 per cent.     In reality this   error is very 

insensitive to a   and varies from 2 db to U db as a   varies from 10 per cent o o 
to .01 per cent.     We will call this spacing the minimum spacing for 

"unc or related" inputs.    This spacing is achieved when 

_£SL 
2(1 -J) 

R   <   0.25 (18) 
MJ 

It has been shown in Report No. 1 that for a three-dimensional isotropic 

noise field and a single pole-spectrum, 

Pa(kd)   < 
2iif1kd 

where c is the speed of sound in ft/sec.   This upper bound is very nearly 

achieved for small values of p_(kd) and for arrays that are not steered in s 

the end-fire condition.    For these conditions 

-jHE (-I'i 
M 
-i 

k-1 

1     C   1 Hi      k      li Ll 

2?*,   d (19) 
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where H is very nearly equal to M for small values of M (M < 6) and is less 

than M for large arrays.    It follows that the "minimum" spacing Is given by 

d> 4 -r^— f.^   . (2o) 
n   ^(1" R^   fl 

The equivalent number of uncorrelated samples is normally quite large, 

resulting in a large d.   For lightly correlated inputs with single-tuned 

spectra, N'   is of the order of   10Tfn (see Fig, 2 or 3).    If we now 

assume that   f., < 5 kc , a lower bound for the minimum spacing becomes 

M 2(1-|) 

The function   — varies from 2 to 10 as M varies from 2 to 50. 

The minimum corresponds to   M =• 2   and hence   d > 90vT   ft.   Thus for 

wide spectra (f, a 5 kc) and short decision times (T ^r 1 sec), an array 

with 2 hydrophones spaced 90 ft apart has crudely independent inputs.   On 

the other hand, for a six-element array,   d > ZOO'sfr* ft , and hence one 

needs a 1000-ft array even for short decision times.   We conclude that the 

spatial correlation of the noise field must be considered for practical 

submarine arrays in order to set a decision threshold independently at 

each bearing angle. 

It is speculated, however, that a similar procedure can now be 

carried out to adapt for the spatial correlation as   well as the time 

correlation.   For instance, it would seem reasonable to try an adaptive 

threshold of the following type: 
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*" = f=TTT   ^1 +  ±  + 1    (1- a ) 
fg^) 

Yvw^ 
(22) 

where AC) and fpC  ) are suitable functions and K. and K» are suitable 

constants.    It should be pointed out that the variance of t" is no longer 

negligible and will have to be considered.    However, for large arrays, if 

N(0) represents the average number of zero crossings over all the inputs, 

the cost introduced by the variance of t" should be small.   A check of 

the validity of this modified adaptive threshold would be quite cumbersome 

and has not been carried out to date. 
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Appendix A     Calculation of N 
eq 

N  was defined according to Eq. (6) as 

T f 

eq N 

1 + ^-i^-Mj 
vhere p (^) is the normalized correlation function of the ncj.se inputs. 

Given P_(T)» N     can therefore be calculated directly on a computer.   The 

correlation function is obtained via the Wiener-Khintchin theorem from 

the power spectrum: 

p(T) =. / S(f) cos 2nf   df     , (A-l) 

0 

where p (T) = £i—* . Assuming a first break point in the spectrum 
P(0) 

occurring at f. and setting x - -s- , one obtains 

p0&) - f,/ S(x) cos xy dx  , (A-2) 

A 
2vkfl 

where   y ■ ——   .   We will consider three classes of power spectra. 
fs 

Case 1.   Consider spectra of the form 

S(x) 
1 + x 2H (A-3) 

where n is any positive integer.    Equation (A-3) can be evaluated directly 

[2J, resulting in 
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p(kT) - f. 

k-l 

sin ßs^.* sr «■■ 5' "' ■assrJ" 

where 
n 

o^-'^E^-0^" 
k=»l 

The limiting case (n—>») is of course 

lA-U) 

p(kT) 
i    y 

(A-5) 

The calculation of Eq.  (6) is then straightforward and is plotted in Fig. 2 

for   n • 1,2,1, and »   versus the normalized sampling rate   fg/fn  .    Observe 

that for   fg/f-i = 100 , N     has essentially reached its asymptotic value. 

We will therefore use this calculation of N      in order to set the threshold. eq 

Below is a table of these results. 

n 1 2 3 00                    1 

VTfi 11.530 U.691 3.883 3.163 

Case 2.    Consider spectra of the form 

S(x) 
a2 \f-      2n 2n\ + x )(l + p   x    ) 

(A-6) 

where   p = f-i/fo    an^   n > 1 .   This can be factored into the form 
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S(x) 

[i-c-ir1! 2n 

2n|  2n-2      2n-U     2n-6 , , .n+l\ 

1+x ? l.p"5^ 

(A-7 

This can now be transformed term by term with the correlation function 

corresponding to   S' (x) =  =«—«-   for   0 < m < 2n-l   being 0 for ro even 
1 + p   x 

and 

- sin 

p'^-'isiE 8"p ^-] sin 

k=»l 

i2iLli^n+Zco8l^lJn 
2n P 2n 

(A-8) 

for ra odd.   Note that for n odd and greater than one, this procedure leads 

to an indeterminant form for the value   p =■ 1 .    For other values of p 

there is no difficulty. 

For example, let us assume that   n - 2 ,    Then it is readily 

detexmined from Eqs.   (A-7 ) and (A-8) that 

P3 sinlf + - p COS -r + 
pV?| " ' -"l" ■ pVi1, 

and hence 

%(kT) - 

'1+^(P3-P)] 

-y 
:e     + e pV2 p3 8in| J + -^l - p «os nv PVF| 

(A-9) 

Thus for a given p Eq.  (6) can be calculated in a straightforward manner. 

As before, the value for N     at   f /f, = 100   will be assumed to be the 
' eq    s' 1 

asymptotic value for N . We will now tabulate the results (Naa/Tf. ) for 

a variety of values of n and p. 

: 

: 
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! \P 
!   n \ 

.1 .25 .5 1 5 10       | 

1   1 
9.133 7.2U85 5.630 U.103 —      i 

2 9.358 7.198 5.230 3.U06 UM h.62 

3 9.1i01 7.210 5.132 

Case 3.    Consider spectra of the form 

s(x) lizli 
a2 »/_      2n 2n N 

+ x )(1+ p   x    ) 

(A-10) 

This can alternatively be written (provided   q' < 1 , which guarantees that 

f, is still the first break point in the spectrum) as 

S(x) cx + —a. 
(l.x2)(l+p2nx2n) (l + p

2nx2n) 

(A-ll) 

It is clear that the correlation function can now be obtained by a linear 

superposition of case 1 and case 2,    Hence for   n = 2 , 

p(kT)  =  f     "       1 
1       1+P 

and hence, 

-y       pVi1 
e     + e   ^ lisistill .* r +    y '   - p cos T + —*- 

^   WP \l    V^P/ 

r 

Pn(kT) 

^b^siE^i] 
'y pV2 <e    +e   ^ 33 + ^£ÜLli   sin 

P cos -jj + 
VFp/ 

(A-12) 

We will now tabulate the results  (N   /Tf, ) for the case   n = 2 eq     1 
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\q 

p\ 

0 .001 .003 .01 .05 ,10 .5 1.778 CO 

.1 9.358 9.U85 9.750 10.705 15.512 20.U36 36.21*8 — 1*6.910 

.25 7.198 7.2 to) — 7.350 8.565 9.679 11*. 177 18.76U 

.5 5.230 — 5.308 — 5.888 7.279 8.1451 9.382 

n 

■" 

:: 
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Appendix B  Calculation of N(0) 

The average number of zero crossings can be calculated i rectly from 

the spectral shape from Eq. (11). 

N(0) =■ ZTf.. 

■   00 

/ x2 S(x) dx 

j S(x) dx 
LO 

1/2 

(B-l) 

This expression can be evaluated readily from the results of the previous 

appendix simply by recognizing that 

S(x) dx - p(0) 

and (B-2) 

x^ S(x)dx- p'(0)     , 

where p^O) Is given by Eq, (A-8), where m is suitably defined. Let us 

explicitly evaluate N(0) for the sane classes of power spectra considered 

before. 

Case 1. For power spectra of the form 

S(x) 

1 + x 
2n 

we obtain from Eqs. (A-lt) and (A-8) that 

(B-3) 

"(o) ■'X £ E ^ "^ "  • 
k»l 
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and (B-U) 
n 

'•w-h-kZ**^*  ' 
k»! 

where the latter result is valid only for   n > 2   Recall   N(0) - «   for a 

"single-pole" spectrum.    .   Using the identity 

n 

V sin(2k-l) 0 
2 

sin   nO 

k-1 

one readily evaluates Eq. (B-l) as 

sin 0 

N(O) - 2T fn 
sin "25 

^1" 
1/2 

(B-^ 

for n > 2 . The results are tabulated below. 

n 2 3 12 oo            j 

»(oVifj 2 i.iau 1.216 1.155 

Case 2, For power spectra of the form 

S(x) 
a2 \ /.  2n 2n \ + x )(l+p x ) 

(B-6) 

p(0) is directly determined from Appendix Aj however, a different factoring 

procedure is needed to evaluate p'CO). 

x2S(x) 

i^-irV" 
2n 2n~2     2n 2n-U.   . / , \n+l 2n 2 

_  a  + 1 + P x   -p x   +,,, + \-i.;  p x 

1 + x' ,^ 2n 2n 1+ p x 

(B-7)" 

0 

o 
:: 

: 
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■ 

One can now use Eq. (A-8) to determine p'iO).   For example, let us assume 

that n •> 2 . Then 
r 

and from Eq.  (A-9), 

■L ^ 1 + p4 

1+ p 

vf1 i vr (B-8) 

1+ 3VT     V?l 1 + p   -w- - p -5— ?    . (B-9) 

Hence from Eq.  (B-l), 

S(0).2Tf,-,   li±£dl£ 
1 VD1*-.2.^ 

(B-10) 

These results 

n and p. 

NCol/Tfj, will now be tabulated for a variety of values of 

X .1 .25 .5 1 5 10 

1 6.32li6 1* 2.8281* 2 

2 5.11*0 3.100 2.01*1* 1.288 1.766 1.9215 

3 1*.955 2.95U 1.908 

Case 3.    For power spectra of the fom 

S(x) 
z, ^  2w.      2n 2nN      ,. L  2n 2nx (1+x )(1+ p   x    )     (1 + p   x    ) 

(B-ll) 

we can use superposition of the previous results to obtain N(0). From 

Bq. (A-12) we have for n - 2 
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1    lV r Vi1 
P3-P+5(PU

+I) 

From Eqa.   (B-8) and (A-8) we readily obtain 

>*^j 

- f. n     1 
1? l+p" T 33+p + 3 (pl*+1) 

(B-12) 

(B-13) 

:: 

o 

Hence from (B-l), 

N(O) - 2Tf. 
f[p3

+P+§(pU
+l)]- 

^   2 

We will now tabulate the results [NCÖl/TfJ for the case   n » 2 , 

(B-1U) 

p\ 

0 .001 .003 .CO. .05 .10 .5 1.778 OB 

.1 5.ilo 5.U05 5.892 7.26? 11.372 13.697 17.950 — 20 

.25 3.100 3.128 3.376 ii.180 U.8U0 6.620 8 

.5 2.0l*U 2,102 — 2.U86 3.185 3.720 k 
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Summary 

The ambient noise model proposed by Talhan (JASA 36, iShX, 

196U) is used to estimate the vertical directionality of ambient 

noise for a variety of velocity profiles and hydrophones located 

100-^00 feet below the ocean surface.    Except when the 

hydrophone is located in a region of negative velocity gradient, 

the model indicates that much of the ambient noise arrives from 

a near-horizontal direction.    The calculated difference between 

horizontal and vertical intensities exceeds 20 db in a number 

of cases.    When the hydrophone is located in a region of 

negative velocity gradient, there is a null in the noise 

directivity pattern in the immediate neighborhood of the 

horizontal.   Aside from this obvious effect of ray geometry, 

the pattern is not markedly different from that of a hydrophone 

located in a region of positive velocity gradient. 

C-i 



■ 

I. Introdttctlon 

In underwater sound detection systems, ambient noise plays a major 

role in limiting target deteotability. It has been suggested by several 

researchers that a large contribution to the total ambient noise is 

generated at the surface, both by wave splashing and by wind blowing 

across wave tops. In particular, R. J. Talhanr ' has used a model in 

which the ocean surface is considered planar and covered by a uniform 

distribution of independent noise sources. The purpose of that paper was 

to determine the vertical distribution of ambient noise as received by a 

hydrophone located at the bottom of the ocean. Curves presented there 

(2) 
compnred the model with some actual measurementsv ' and showed good 

agreement at low sea state. It was shown that the largest amount of noise 

power was received at nearly horizontal angles, and that the noise 

intensity decreased as the vertical angle increased, reaching a value 

10-20 db lower when the array was beamed straight up. 

The question arose as to whether this same general vertical 

distribution of noise would be observed by a hydrophone array near the 

surface, say between 100 and 500 feet below the surface. This paper 

undertakes to answer that question. The model of surface noise discussed 

by Talham is used as is the general fabric of his derivation. However, 

since the hydrophone is near the surface, the fine structure of the 

sound velocity profile near the surface becomes important, and consequently 

different profiles are used. The one employed by Talham ignored this fine 

structure near the surface as being insignificant to measurements made at 

the bottom of the ocean. 
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II.    Derivation of Vertical Distribution 

The geometry used by Talham with slight modifications is shown In 

Figure 1.    A hydrophone located at depth H Is directed at an angle 0 from 

the horizontal, and for simplicity is considered to be omnidirectional with 

respect to azimuth.    Noise sources are assumed to be located uniformly 

over the surface with density D sources per unit area.    The sources are 

statistically independent, and each emits P'gCO-) watts per unit solid 

angle into the water at an angle 91 with respect to the horizontal. 

ring 3 

Figure 1  Geometry of the Model 

Talham shows that the Intensity (watts per unit area) of noise 

arriving at the hydrophone between the angles 0 and 0 + AQ , and due 

to those sources lying in the Innermost surface ring (ring no. l) of 

area As, is 

AIj^ = DPg(01)W expf-aoRj Isin eJ'
1^ cos O^oj 

where P and D are defined above and W is the ratio of backward-to-forward 

spreading loss, which plays a significant role in Talham's derivation and 

is given by 
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w = w(o ) 
cos 

cos Q 
(2) 

The attenuation of the noise energy is given by the exponential function 

where a is the attenuation constant and R- is the ray path length from 

the hydrophone to the surface.    The factor   2JI cos 0 &0   is the solid 

angle at the hydrophone inside of which noise from La can reach the 

hydrophone.    The factor   2n cos 0     accounts for the fact that this solid 

angle decreases as 0   becomes larger.    The inverse   sin 9..    dependence 

takes into account the rapid increase in La as 0. decreases, and therefore 

the rapid increase in the number of noise sources contributing to AI. 

This dependence is most clearly seen in the following argument, where for 

simplicity the rays are taken as straight lines.   Thus   0.. = 0    , and 

as shown in two dimensions in Fig. 2, the areas M and As are related by 

M = As sin 0. for small A9. 

Figure 2     Simplified Geometry Illustrating   sin 0   "   Dependence 

Ignoring attenuation and considering the usual inverse square law 

for spreading loss, each noise source in As produces at H an intensity 

proportional to   l/TL    ,   However, AA is proportional to   R.    cos Ö     for 
o 

a fixed AO and consequently As is proportional to   R.    cos Q/oin ft,   . 
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Thus the number of noise sources in As is proportional to R- cos Q/sin 0 

and the aggregate intensity at H varies as cos Q /sin 0. . 

Finally, 0. and R. are related to 0 by standard ray tracing relations. 

For instance, by Snell's law we have 

chyd 

cos o 

'surf 

cos 01 

(3) 

where c. . and c  » are the velocities of sound at the hydrophone and 
nyd    surf r 

surface respectively. The constant CL is peculiar to the ray arriving 

at the hydrophone at angle 0 and is normally called the 'ray parameter,' 

Also contributing to the total noise arriving at angle 0 is energy 

that arrives at As along rays originating at greater distances on the 

surface, as shown in Fig. 3 in two dimensions. 

Xn ^^ring no. 1 ring no. 2,>   ^j,—ring no. 3 

Figure 3  Contriuutions to Intensity from Distant; Sources 

■ 

■ 

n 
n 

n 
.. 

Oi 
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The cases of angles 0 below horizontal are also shown to indicate 

the similarities and differences between the two cases. Since a given 

ray has associated with it a particular parameter CL by (3)» at each 

depth all the rays that finally reach the hydrophone at angle ±0 

exhibit this parameter, and thus in Fig. 3 all rays shown have angle 0. 

as illustrated, where 
cos 00 - -R^- (k) 

c(y2) 

and c(y2) is the speed of sound at depth yp. (Note that since yg is 

positive downward, angles are measured positive in a clockwise direction.) 

This symmetry, which requires that the surface and bottom be parallel, 

simplifies the addition of ray components. We now consider the two cases 

separately. 

III. Upward-Looking Case (0 < 0) 

From Fig. 3 it is seen that there exist components of the total 

intensity at angle 9 originating at x^, x,, etc. The r^y originating at 

x, travels a total path length of 2R + R" 3R. + 2R2 before reaching the 

hydrophone, and makes a reflection off both the bottom (reflection 

coefficient ß) and the surface (reflection coefficient v}. Since the 

geometry is otherwise the same as for AI,, and since phase shift is 

unimportant (the ncise sources are independent), the contribution due to 

the sources at x. is, from (1): 

AI3 - ALj^V exp[-l;aR] (5) 

Consequently the total intensity at H due to all such cor.bributxons is 

AI = A^ y1   yV expf-UiaRJ »  (6) 
i=l 1- Vß  expf-UaRl 
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To obtain the final form, we remove the dependence on the size of the 

solid angle at the hydrophone by deleting 2n cos Q  in (1), divide 

through by AO, and let &0 —♦ 0 . This yields for the (upward-looking) 

vertical noise distribution N (0 ) up o' 

DPg(On)W exp(-2aR.) 
N (0 ) ± —, (7 ) upx o 

(sin Q^ 1-ßy exp(-UaR) 

C-6 
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Another way of considering the deletion of 2n cos Q     is to consider the 

hydrophone array to be no longer azimuthally omnidirectional, but to have 

an azirnuthal beam width of, say, a,  measured normal to the ray entering 

at angle 0 . This replaces 2n cos 0  in (1) by the single tsrra a, 

which then of course is retained in (7). As the final results are to be 

normalized anyway, the two approaches are equivalent. 

It is possible that the hydrophone can be located at a depth such 

that rays arriving at angle 0 cannot reach the bottom. This is true o 

whenever 

GV<cbottom (8) 

where c. ..  is the speed of sound at the ocean bottom. A typical 

example is shown in Fig, U along with a velocity profile. For a given 0 . 

CL. given by (3) is a sound speed which is equal to the speed of sound at, 

say, depth d. Thus by (U) the ray angle must be zero at depth d. Since 

cos op l*1 (^} cannot exceed unity, no ray with parameter CL as shown can 

penetrate beneath depth d. Thus in N (0 ) of (7), the term p is removed 

(or set to unity), and path length R is as shown. 

:; 
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Figure U  A Situation with No Bottom Reflection 

IV. Downward-Looking Case (0 > 0) 

Following the derivation for the upward-looking case, it is clear that 

the only difference in the two cases is that the ray reaching the hydrophone 

at an angle below horizontal must have travelled further, and if the 

bottom is reachable, will have sustained an additional bottom reflection. 

Thus from Fig. 3 it is seen that a ray must travel further by a 

distance R + R2 -R. » 2R2 than a ray arriving above the horizontal, 

and that 

N down^-V-VP^-^V (9) 

Again, if the bottom cannot be reached, ß is set equal to unity. 

V. Various Propagation Situations 

As was suggested by the sample velocity profile given in Fig. U above, 

CL » chvycos e  determines a velocity of sound for each angle 0 , Given 

a particular profile, CL. thus delineates various regions in the ocean in 

which the given ray nay exist. It is interesting to consider the 

possibilities as a function of 6 . 
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A typical contour Is given in Figure £ along with two different 

hydrophone depths, H. and H..    Associated with E. are three rays 1,2,3 

showing the three possibilities for rays arriving at E,.   Bay 1 is 

C-8 

: 

■ 

i confined to the region near the surface because   CL   < c    .    , where 
1 

c    .   is the speed of sound at the peak in the profile.    Ray 2 has a very 

long path length for all contributions but the nearest, and also ray 2 

does not reach the bottom since   Gtr   < cv «t     '   ^ ■* is seen to reach 

the bottom, as will all rays arriving at angles greater than that of ray 3. 

Clearly for E, all rays do reach the surface and thus there is no 

null in the Intensity due to surface noise.    This is not true in the case 

of a hydrophone at H«, as shown by ray A, which cannot reach the surface 

(or originate at the surface) since   C_    < c
m ^e '   Thus a nul1 ^ 

A 
surface noise is expected for all angles 0   satisfying 

H 
cos 0     >    2- (nun exists) (10) 

cmode 

where cu   is the speed of sound at H9.    As 0   Increases further, so that H2 to 

this condition is no longer satisfied, then rays similar to ray B or 

ray C are observed. 
v.. 

Combining these thoughts into a single representation, one expects 

that a polar plot of N    (0 ) and N,      (0 ) vs. 0   will exhibit fairly r r up   o down   o o 
well-defined regions, each corresponding to one of the ray types discussed. 

This is suggested in Figure 6, where the contour and depths from Figure $ 

have been used. 

Ö 
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3. deep water 

3. 

1; near surface 
'1. 

hydrophone at H- 

H    (0) upv  ' 

Ndown(0) 

hydrophone at Hp 

Figure 6     Polar Delineation of Ray Type Regions 

It is expected that there will be a rather rapid decrease in N    (0) 

and Nj      (0 ) at the boundary between regions 1 and 2, since the path 

length abruptly becomes much larger, and consequently contributions AI-, 

AI,-, etc., are more attenuated.    Such a rapid decrease is not expected at 

the boundary separating regions 2 and 3, however, since of necessity the 

grazing angle with the bottom is very small near this boundary, and 

consequently the reflection coefficient is near unity. 

For completeness it should be remarked that for profiles where 

cbottoin < c   de » regioas 2 and B are absent, since then any ray 

penetrating into deep water will always reach the bottom. 

VI.    Computation of Noise Distribution 

It is noted from (7) that the vertical distribution N
UD(0o)   land 

consequently Ndown(0o)*|   requires that 0^ R^ R, and   ß = ß(OboUom) 

be known.    To this end a ray tracing program was written, and this was 

applied to several profiles approximated piece-wise by straight lines. 

: 

n l 

ii 
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The ray tracing program is described in the Appendix. The significant 

outputs of this program are R. and IL,  the ray path lengths from the 

hydrophone to the surface and bottom, respectively, ß was found using 

(3) the curves shown in Figure 7, originally reported by Marsh and Schulkln.  ' 

The same surface reflection coefficient y and attenuation constant a as 

used by Talham were also used, namely, y » 1 , and a - ,0038 f^' Np/kyd , 

where f is in kilocycles per second. A different value of V is also tried, 

as discussed below. Two source directionality functions g(0-) were used, 

g(01) ■ 1 and gCO = sin 0. , although others were checked and showed 

no peculiar features. Talham showed that at least on the ocean bottom, 

and at low sea states, g(0, ) = 1 agreed most closely with available data. 

The results obtained are presented in Figures 10-18 as polar plcts 

of N (Q ) and N, (0 ). All plots are in db relative to unity, with up o     down o c ' 
P and D normalized to one. Two values of frequency were used, U00 cps 

and 1000 cps, as being representative of the range of interest. Four 

sound velocity profiles^ ^ were used, as given in Fig. 8, Attention was 

concentrated on the Bermuda profiles, while the Iceland profiles are 

included for purposes of comparison. Various features of these graphs 

are discussed below. 

Certain situations can be handled analytically for comparison with 

computer results, and to show the major effects contributing to N (0o). 

In particular the cases where 0 is near 0 or 90 can be studied. 

Assume that 0 ■ w . Then from (7) we have, since 0. = 6 = 5 » 

C-ll 
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DPg^e"20« 

DPg(a,) 
N (9 ) ä  ~      (0^ small)      (13) 
up 0   sin Q^kaR) o 

and 
cos 8 - coa Q, - ä (15) 

o      1  r 

C-14 
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where H and B are the depths of the hydrophone and bottom respectively, and 

the dependence of ß on the bottom angle is indicated as ßfc) . The 

approximation in (12) stems from the fact that at frequencies in the hundreds 

of cycles the exponents in (11) are very small. 

At the other extreme, when the hydrophone lies in a region of positive 

gradient, as at IL in Fig. 5, and 0 is small enough so that the ray is 

confined to depths less than D^J, (region 1 of Fig. 6), then R. and R^ 

are reasonably small, W^ 1 , and ß - 1 . Thus from (?) NUD(
ö,j) becomes 

approximately, with V ■ l , 

This may be reduced further if the velocity gradient 0 at the 

hydrophone is approximately constant up to the surface. Then the radius 

of curvature r of the ray may be shown^ ^ to be r = CL/0 . Using the 

geometry of Fig. 9, where R- is the distance from H to the maximum depth 

reached, it is seen that 

^ - r(01-Oo)   ,   R2 - reo   ,   R - ^ (lU) 

0 
DI 

: 

n u 

3: 

"' 

mm 

:. 
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Figure 9 Ray Path Geometry for A Constant 
Positive Velocity Gradient From 
The Surface to The Hydrophone 
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But since   C^ - «wj/cos Oo ,   (15) yields 

where 

Thus (13) now becomes 

cos 0. - (1 - k) cos 0 (16) 

Lk-1. JE. ,!£!££ (17) 
chyd      hyd 

N    (0 ) i  (i8) 
up   o 

D P g(Q  ) Q cos 0 
N    (Q ) i      0 (0ft small)      (19) 

Up        0 ) n' 0 
lwBine;Lchyd^2k+(l-k) 0o

2 

The two forms for 8(0,) treated here are    g(0.) = 1   and 

§(0^,) » sin 0.  .    These forms yield the results 

DPG cos 0 
N    (0o) .      g "   6(Q1).sin01 

Uachyd^2ki (1-k) 0' 

The approximation   sin ft.  = o.    is used in (20).    As an example, for 

the Bermuda winter profile, with the hydrophone located at 100 ft, k has" 
o 

the value .0003 . Thus the term 2k is less than (l-k)O  if 0 > l.U o o — 

degrees.   The forms of (20) and (21) show that as   0 —»0    , N
ut)(

0
0) 

approaches the values 

C-16 

(21) 

ha sin O-jT 0. 

Using   cos 0 - 1 - ^-   twice in (16), (18) then yields 
f 

: 

DP G cos Q 

V0o) :— ^     if ^V'1   (20) 

Uachyd[2k+(l-k)0o
ZJ 

up" o r 9-[ X 

n 

up"  0 ' / jj 
'1 

;1 

! 
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DP 
"FÖH 

DP 

if g(e1) = i 

(22) 

•gSL-^ir  if g(e:L) = sin 0^^ 

It is noted that the only dependence on the velocity profile for 

0=0 occurs in k. Thus, for example, in any ocean for which a constant 

positive velocity gradient exists from the surface to the hydrophone, and 

for H ■ 100 ft and f = hOO  cps , we have in db (with P = D = 1 ) 

V0) 
35.9 db if   g^) - 1 

db 

(23) 

35.9 - 5 log10 gir db    if   g(0l) = sin 01 

i 
i 
i 

For both the Bermuda and Iceland winter profiles (23) yields 19.8 db for 

the   g(01) ■ sin 6.    case.    These agree closely with the computer results, 

as seen In Figures 10 and 1$,   When the hydrophone lies in an ocean region 

for which the gradient is negative, as at H. in Fig. 5, the simple 

geometric techniques used above fail due to the complicated ray path. 

Shadow regions are easily found, as mentioned in Section IV, but actual 

results for N    (0 ) require a computer.    In all cases N,   _(© ) is easily up   o down   o 

found from N    (0 ) by means of (9). 

It is instructive to consider the physical causes for the various 

results obtained in (22).    Beginning with (13), it is seen that there are 

two separate contributions to N    (0 ),    The first is the inverse sin 0. 

effect, which arises geometrically (see Fig. 2) and relates the number of 

noise source elements spanned by the beam of the hydrophone.    This effect 

is cancelled, of course, if it is assumed that   g(0. ) =■ sin 0 .    Thus the 
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This second effect due to contributions from remote sources is 

heavily dependent on the fact that the surface reflection coefficient 7 

is assumed to be equal to unity.    If this is not the case, but V differs 

from unity by 6,  (y-1-6), then (?) leads to 

C-18 

: 

magnitude of this effect can be judged from a conparison of the graphs with 

g^) - 1    and   g(0]L) - sin t^ , as in Figs. 10, 11, 15, and 16.    The 

effect is present in the other cases as well, of course, but (22) is only 

applicable to the cases corresponding to these figures.   The second effect 

is that of the inverse path length dependence, which is easily traced to (6) 

and is due to the summation of contributions from remote surface elements. 

It is thus seen that these remote sources add up significantly at small 

values of 0 , producing as in (18) an inverse ft, dependence (where ft. is 

small when 0   is small).    Thij is true for low frequencies since 
o J . . 

attenuation is then small. The magnitude of this effect is demonstrated 

in Fig. lh,  where the complete N (0 ) and N.  (0 ) are compared with the up   o down   o 
corresponding ambient noise levels when only the first contribution to the 

noise, that from ring no. 1 (see Fig. l), is considered.    These values 

were obtained by setting   V = 0   in (6).    It is seen that the noise level 

due to the first contribution is independent of frequency for upward- 

looking cases and only slightly dependent for downward-looking cases. 

The independence is due to the negligible attenuation for the short path 

lengths involved, while the slight dependence in the downward direction is 

due to the fact that the bottom reflection coefficient ß is a decreasing 

function of frequency [Fig, Tj. 

o 
:; 
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DPg(0,) 
N (0 ) •  a i r    (0^ small)    (2h) 
UP 0   aine^l-yd-UoR)]      0 

DPg^) 

sin 0. L [e* UoRy] 
(25) 

Marsh et al. have derived a theoretical dependence for y on several 

parameters, ^ ' arriving at 

6 = .U85 f1,5 (1.77 h)1'6 sin 0^ (26) 

where f is the frequency in kcps and h is the rms wave height. This 

dependence is valid for small 0- and low sea state. However, it will have 

little effect on N (ö ), since O, is very small when 0 is near zero, and 

consequently v ~ 1 .    A sample computer result is shown in Fig, 10, which 

compares the values of N (0 ) when y •> 1 and when y « 1- 6 , It is seen up o 

to cause a negligible reduction in ambient noise level. 

VII. Further Discussion of Results 

The rather peculiar shape of the vertical noise distributions of 

Figs. 10-18 merits some discussion. Examining Fig. 10 as an example, it 

is seen that the noise level drops suddenly as 0 passes beyond k   or 5 . 

It is seen that this Is true for both the g(0. ) ■ 1 and g(0 ) • sin 0. 

cases, so that the effect cannot be due to the falling off of the number 

of noise elements involved (the inverse sin ft. effect). The effect 

instead is that of attenuation, for as shown in the table of &. and IL 

accompanying Fig. 10 (which applies as well to Fig. 11), there is a 

sudden jump in &, + R? as e reaches 5°, for a hydrophone at 100 ft. 

This is due to a jump of the ray from a region 1 type to a region 2 type, 

as shown In Fig. 6. The angle 0 * 5° is just sufficient to allow the 
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ray to pass out of the shallow water channel Into a deep water path.    This 

causes all contributions but the first to the total noise level to travel 

C-20 
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much greater distances to the hydrophone. Due to the attenuation of sound 

In water, these now very remote contributions are much smaller, and the 
-- 

total noise level Is consequently reduced. 

Beyond this sudden drop there Is a gradual decay In the noise, 
O 

except in the case where g(Q,) * sin 0. , where slight increases are 

seen due to the fact that H. + R» again decreases slightly. The decay 

increases as soon as the bottom Is reached (which occurs at 12° in all 

curves of Figs. 10 and 11), for the bottom reflection coefficient begins 

to decrease from unity. Finally this levels out as seen fron FiLg. 7 and 

thus the gCQ.) - sin 0. case is essentially constant while the g(ö, ) ■ 1 

case decreases due to the inverse sin 0_ effect. 

The difference in hydrophone depths is seen to be unimportant except 

at small values of Q , since at small 0 the slightly Increased path 

0 

-1 
length for larger hydrophone depths permits a small change in 0., and 

N (0 ) is very sensitive to ft, at small values of 0 . At larger values 

of 0 the rays are geometrically very similar for different hydrophone 

depths. 

In the summer profile cases of Figs. 12 and 13 the g(ft,) ■■ sin 0 

case shows a constant noise level over a range of 6 near n/2. This is 

due to the fact that K.  and R, + R? are essentially constant over this 

range, as a sketch of ray paths for such a profile will readily show. 

Since the inverse sin Q, effect is cancelled in this case, the constancy of 

the noise is understandable. It ends as soon as the bottom is encountered 

(at 8° for a hydrophone depth of 100 ft, and at 11° for a depth of 500 ft). 

■ 

1 ■ 

Ü 
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For still larger angles the features mentioned above again apply. The 

summer cases also exhibit regions in which a null exists in the ambient 

noise. These are considered in more detail below. 

VIII. Conclusions 

It has been shown that an ambient noise model which assumes a 

uniform surface distribution of independent noise source elements gives 

rise to one of two very different noise distributions vs. vertical angle. 

If the hydrophone lies at a depth where a negative velocity gradient 

exists, there will be no surface ambient noise received at angles near 

the horizontal, although at slightly larger angles the noise intensity 

will rapidly jump to a high level. If the hydrophone lies in a region 

of positive velocity gradient (and if the sound velocity at the hydrophone 

is greater than that at the surface), then no shadow region exists and 

the noise level grows rapidly as the vertical angle approaches the 

horizontal. This peaking near 0 = 0 is due to two important features. 

The first occurs because at small values of 0 a small solid angle at 
o 

the hydrophone covers a very large area of surface due only to the 

geometry involved. The second arises from contributions to the noise 

generated far from the hydrophone and propagating to the hydrophone via 

many surface bounces. This effect may be greatly reduced if the surface 

reflection coefficient is heavily dependent on sea state. The first 

effect nay be counteracted partially if the surface noise elements are 

directional, such that more power is transmitted at steep downward angles 

than at very shallow angles to the surface. 

The results in the winter profile cases shown above are seen to 

depend only to a small extent on frequency and hydrophone depth, for low 
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frequencies (100-1000 cps) and shallow depths (100-500 ft).    Except for 

the seasonal shifts in velocity profiles which cause radical changes in 

the noise distribution, the distribution is rather insensitive to profile, 

as seen by comparing the Bermuda and Iceland cases in each season. 

The superficially promising null in the noise at small values of 0 

during the summer months is not actually very helpful,  since it is due to 

sound channeling effects.    Thus a target near the surface would also be 

hidden from the hydrophone.    The exception to this would occur if the 

submarine and hydrophone were both in the negative gradient region (below 

D     ,    in Fig. 5) and at approximately the same depth.    Then the submarine 

signal would arrive at the hydrophone at an angle near zero, for which 

there is a null in the surface ambient noise.    This case possibly could 

be taken advantage of, in order to combat such noise. 

The results indicate that bottom bounce techniques might be employed 

in order to take advantage of the greatly reduced ambient noise at angles 

steeper than about 20 .    The noise level at these angles can be as much 

as 28 db below that at near horizontal angles. 

The above results depend strongly on the assumed noise model.    The 

need for careful measurements of the vertical noise distribution near 

the surface therefore appears to be indicated.    By comparing such results 

with the various cases given in Figs. 10-18, it should be possible to 

make some judgments as to the functional form of g(Q- ), the surface 

reflection coefficient y, and indeed the validity of the basic model 

concept, that of a uniform surface distribution of noise sources. 
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Appendix     The Ray Tracing ProRrain 

In order to evaluate N    (0  ) and N
(J0Hn(e0)> the follovdng quantities 

must be computed. 

Q1:    the angle of intersection of the ray with the surface 

0.   ..    :    the angle of intersection of the ray with the bottom 

R.:    the ray path length from the hydrophone to the surface 

IL:    the ray path length fron the hydrophone to the bottom 

If the ray does not reach the bottom, then R? is the path length of 

the ray from the hydrophone to its position of maximum depth, at which 

point, of course, it is moving horizontally. 

If the velocity profile is approximated by several straight line 

segments, the ray path in the region of depth for each segment is uniquely 

determined by the angle with which it enters the region, the velocity of 

sound at the depth at which it enters, and the velocity gradient in the 

region. 

By Eq.   (U) the angle at each depth is known as soon as 0   and c,    , 

are given, and the sound velocity at that depth is computed.    Thus 6. 

and 0.   ..       (when applicable) can be found without any ray tracing as such. 

The program used begins at the surface, and taking each linear 

segment, subdivides the corresponding depth interval into a sufficient 

number of subintervals.    The criterion used was that the ray angle should 

not change by more than a specified fraction of a degree over the subinterval. 

A change of one degree was found tolerable.    Thus in this subinterval the 

ray path is essentially straight, and if it is directed at an angle 0. 

with respect to the horizontal, the path length in the subinterval is 

• 
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d./sin Q.   , where d.   is the change in depth in the subinterval.    Thus IL 

is merely the sum of all these contributions, until the depth of the 

hydrophone is reached.    This number is stored and then the computation 

resumes downward to find R-,    When either the bottom or an angle    9.-0 

is reached, the computation is terminated. 
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Summiry 

The detection of s  single- sonor pulst by mfans  of a correlation detector 

is  anal zed in the absence  of Doppler shift  due to transmitter, target,  or 

scatterer motion.    The returned signal is  assumed to be ?. delayed replica of 

the trpusmitted signal.    Noise fields  consisting primarily of volume rever- 

beration,   surface reverberation,  and  ambient noise arc- considered separately. 

The  reverberation noise  is  assumed to bo  generated by  independently  located, 

Poisson distributed scatterers, dispersed throughout the illuminated volume 

(volume reverberation) or near the  illuminated surface  (surface reverberation). 

The transmitted signal is  assumed to be  a pulse of sinusoidal  carrier with 

or without  superimposed linear frequency modulation.    The  followinr results 

are  obtained: 

1) The bandwidth of the transmitted signal imposes  an effective range 

gate  on output noise  arising  from the intermodulation products of 

signal wiih reverberation.     The width of this gate  is  of the order 

of the velocity of sound  divided by the bandwidth  of the  signal. 

(  this        ratio may be regarded as the correlrtion  distance  in the 

water of the transmitted signal).     Only scatterers whose range differs 

from that  of the target by no more than the  gate width contribute to 

this  type of output noise   (which is dominant under high signal to 

noise conditions). 

2) Output noise consisting of the intermodulation products  of reverberation 

with reverberation  is  contributed by all scatterers  illuminated 

simulaneously with the- target.    Contributing scatterers therefore 

lie within a range  gate determined by the pulse duration rather 

than the  (possibly much shorter)   signal correlation time.    However, 

the two members  of each contributing pair must be  separated form each 
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oth*rr by r\  rwngo difference no greater than the "range gate" defined 

in l). Intermodulation of reverberation with reveration is the dominant 

noise- at low input signal to reverberation ratios. Except for the 

phenomenon discussed in 3), there is no angular discrimination 

against either type of reverberation noise r.side from the obvious 

effects of transmitter and receiver benm patterns. 

3) A special case of 2) is output noise due to the intermodulation of 

the returns from a particular scatterer to the two receivers. This ii 

type of noise is important only when one or a few strong scatterers 

(false targets) contribute a significant fraction of the total 

reverberation. False target returns are subject to angular dis- 

crimination  .being sharply attenuated if they are separated from 

the target by more than a certain angle. This angle defines the 

minimum angular resolution of which the detector is capable. For 

a broadside target it is the arc sine of the ratio of the signal 

correlation distance to the spacing between receivers. The resolution 

is best in the broadside direction and poorest in the endfire 

direction. 

U) In the absence of a target the average detector output is zero except 

for a transmitter-receiver combination with very narrow beam patterns 

trained very close to the axis of the receiving amy.In the latter 

D-ii 

ii 
n 

.. 

■ 

■ 

case a non-zsro average output may result from the inability of 

the detector to resolve different scatterer groups within the illuminate 

area. 

5) In the absence of strong scatterers (false targets) and for beams 

trained far enough from the array axis so'that the resolution 

problem mentioned in U) does not arise, the reverberation may be 

.! 
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regaxiad as E Gaussian aoise process.    For a fixed input signal to noisi 
1 

ratio,  there is  then    no difference in performrjice between a detector 

^ operating in a noise field consisting primarily of reverberation and 

a similar detector operating in an ambient noise field with the 

same power spectrum.    If the ambient noise field is broad-band 

but is filtered so that its spectrum comes close to matching that 

of the signal, there is still no important difference between 

detector performance in reverberation limited and rxibient noise 

limited environments  (for fixed input signal to noise ratio).    One 

must keep in mind, however, that the effective input  signal to noise 

ratio tends to vary inversely with the sifnial bandwidth for ambient 

noise, whereas it  is independent of the signal bandwidth for re- 

verberation.    Thus maximum output signal to noise ratio is generally 

achieved by the use of broadband signals if the primary problem is 

reverberation and by the use of narrowband signals if the primary 

problem is ambient noise.     In the former case one takes advantage 
1 

of the range gating effect produced by short signal correlation 

times, in the latter case one relies on noise reduction through 

ml the use of narrow filters matched to the signal spectrum. 

6)    Under the conditions  stated in 5)    the output signal to noise 

ratio varies as the square of the input signal to noise ratio for 

small input  signal to noise ratios  and as the  first power of the 

input signal to noise ratio for large input  signal to noise ratios. 

Thus the correlation detector operates much  like  a coherent detector 

for large input  signal to noise ratios but more like an incoherent 

detector for small input signal to noise ratios.    The output signal 

to noise ratio of a true coherent detector  (correlating the output 

:; 

i 
i 
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of one receiver with a delayed replica of the transmitted signal) 

Is precisely twice that of the correlation detector In the limit of 

high Input signal to noise ratio. For one set of reasonable parameter 

values, the correlation detector requires an Input signal to noise ratio 

8 db higher than that of the coherent detector in order to achieve an 

output signal to noise ratio of 6 db. 

7) The primary difference between surface and volume reverberation is the 

time dependence of the former, caused by the fact that surface rever- 

beration Is a problem only when elements of the surface ere  illuminated 

simultaneously with the target. This leads to limitations on desirable 

pulse length which are not present in the case of volume reverberation. 

8) Reverberation power varies with range: with the inverse second power of 

range for volume reverberation and the inverse third power of range 

for sutface reverberation. The input signal power varies with the inverse 

fourth power of range. Hence, for small input signal to noise ratios, 

the output signal to noise ratio varies as the inverse fourth power 

of range for volume reverberation and the inverse second power of range 

for surface reverberation. When ambient noise dominates, the output 

• * 

. 

signal to noise ratio varies with the Inverse eighth power of range. 

Under conditions of high input signal to noise ratio, the output signal 

• • 
to noise ratio varies with the Inverse second power of range for volume 

reverberation, with the inverse first power of range for surface 

reverberation and with the inverse fourth power of range for ambient noise. 

111 
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I.    Detection in a Reverberation Limited Environment 

This report is concerned with the detection of an active sonar signal 

in a noise environment that may be dominated either by reverberation or by 

ambient noise.    The postulated signal processing scheme is outlined in Figure 1. 

A sonar pulse produced by a transmitter with known beam pattern is reflected 

by the target and received at two locations, labelled receiver a and receiver b 

: transmitter 

—       d      -> 

bv' 

target 

receiver b 

delay i -X—•    i    rr:—~—i    now pass Imultiplier^— 

A 

ii 
yI    filter 

OUt/T'Vt 

:: 

:: 

Figure 1 

respectively.    Whether each of these receivers consists of one hydrophone 

or of a group of hydrophones  is immaterial to the analysis except for the 

effect    JR the signal strength received from any given direction.    As long as 

the two receivers are similar and the target is relatively remote (r »>d), any 

beam-forming effects of the receiver can clearly be lumped with those of the 

I 
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Transmitted signal = exp t2 

aT 

cos(co t  +  -  t.    ) (l) 

In a re*ftrbf?ration dominated environment the output v    of receiver a 

2 
For the relatively wideband signals considered in much of this 

D-2 

transmitter,  -i'o <Ä»t,i>»»+. of ono röceiver is delayed by an amount t . 

r-b .oon so as to bring the two target returns into alignment (steering). 

It is then multiplied by the output of the second receiver and the product 

Hi 

n 
y is smoothed by means of a low pass filter. Reverberation is assumed 

to be generated by a series of scatterers randomly distributed in volume 

and at the surface. The scatterers, as wall as the source and target, 

2 
are assumed to be at rest. 

The transmitted signal is taken as a linearly frequency modulated 

pulse with Gaussian envelope. Thus - • 

'" 

In cases of practical interest the pulse width aT,  maximum frequency 

deviation in the pulse Ka^.and mean carrier frequency  iisatisfy the 
i ' o 

inequalities 
. 

V<KaT<<a3o (2) 
■ 

• > 

0 
1 
Alternatively ore might use transducers a and b for transmission as 

well as reception.    With proper delays in transmitted and received signals 
the signal component    of the output would be identical with that obtained 
from the configuration of Fig. 1.    The formal expression for the reverberation 
noise would be more cumbersome,  since for most scatterers the round trip 
times to one receiver from the two sources would be different.    It is 
not felt that the inclusion of this added complexity would yield significant 
additional insight into the detection process. 

: 

report, the Doppler shifts due to scatterer motion (even due to target 
motion) should be quite small compared with the signal bandwidth. 

: 



I 
I can now be written as follows: 

V (t) = -^xexp 

V 
(t-tar 
—r- 

COs[a>0(t-ta)+f (t.ta)
2] 

*lb exp - 
(t-t.) 2-, 

cosfo^t-t.^ + | (t-^)2] (3) 

: 

In Equation (3) t. 
r^ + r 

o       a is the round trip time from the 

transmitter via the target to receiver a,    c is the velocity of sound 

in water,    t.  is the round trip time from the transmitter to scatterer 

i and back to receiver a.    The constant A depends on the scattering 

cross-section of the target and on the amount of radiation received by 

the target, i.e. on the beam parameters of the transmitter.    In similar 

fashion, a.  depends on the scattering cross-section of the i      scatterer 

and on the transmitter beam parameters.    The dependence of the signal 

2 2 and noise components of V (t) on l/t      and l/t.    respectively reflects 
3 3 X 

the usual spherical spreading loss and results in a non-stationarity of 

the reverberation noise. 

In completely analogous fashion the output 7. of receiver b assumes 

the form: 

V" = n exp 
r u-v 

cosfwo(t-tb) +2'(t-tb)   ] 

I 
I 
I 
I 
I 

0       J 

exp 
CWJ 2~\ 

cosU (t-T^) + f U-Tj)2] ih) 

Here t, and T . are the signal round trip times from the transmitter to 

Strictly speaking, the first term is proportional to c /(r0
r
a)
1 wit:h 

r «r this becomes approximately 4/t ^ 
o a 
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+  *  )   * exp 

b      i     i 

exp 
r t - VV^ 

^/2 

cos 
t.+t +t b   r ^o^V^^^W*!^*"-^ H 

: 

receiver h via the target and scatterer j respectively.    V, (t) is delayed 

by t    seconds and multiplied by V (t) tr yield y(t).    After some algebraic 

simplification one obtains: 

y(t) 
2t 

exp - 
(t -t.-t  ) v a    b   r' 

21 

exp 

,      t +t.+t t -   a   b   r 

^72 

;: 

cos vvw+ ^ w^)^ - J0-i) ■• 

—2L -2 exP 

a     J     J 

(t -T.-t  ) a    L r 

2o
T 

2n 

exp 

t +T .+t , 
t__a_^_r|   . 

V/2 

cos 
T +t +t    1 

w (T.+t -t  ) + KdVt -t  )(t -    3- r    a) 
ox j    r    a'        v  j    r    a/v 2 -'j • 

a. a 

i    J    i Tj 

{t,-T4-t  ) 

2n * 

2i 

exp 

t.+T.+t 
t -    1    3    r 

1  
!   /2 

T.+t +t r T.+t +t 
• ccs  ^(Tj+t^) + K(T;J+tr-ti)(t -   J 2

r   >) (5)i 

:: 

If the weighting function of the low pass filter is w(t), ilis 

output z(t) ie given by 

:: 

Sinusoidal terms in 2(i; t have been discarded since thy will be 
filtered out by the low pass0filter in any case. 
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I 
I I dp z(t) -    I   # w(p)y(t-^) 

o 

(6) 

: 

For computational convenience the weighting function will be shosen as 

,2 

w(t) 
V*CTf 

exp 
(t-t/ 

2 
Of 

(7) 

This corresponds to the frequency function 

:: 

:: 

G (w) =    I   w(t) exp  [-jut]    dt = exp u exp [- ^tD] (8) 

As long as the time delay t satisfies t » a-,, the filter is 
D D ' 

approximately realizable. 

Substituting Equations (5) and (7) into Equation (6) one obtains 

after extensive algebraic manipulations: 

A2 0r 
z(t) -     AA   * -£ exp 

2VV^ 

(Vvtr) 2-1 

exp jn^bi' "2—r,_ 
oF * c-T /2 

exp 

2    2 

^T    bra' 

» cos "o^VV^^^aV^a^* 
t+t +t 

I 
I 
I 
I 

a_ p—« a. A   0c^ .      A   _cv    j,    exp 

2t./ 0F Y T^ 

(t -T.-t  ) 
a    Ü   T exp 

oFS aT72 
exp 

a T .+t -ft 
cos^ "o(TJ+tr-ta) + K -22 (Tj+Vta)(t -    J 2

r 

0F 

D- 

-. t J\ 



1 

o. r-^a. 

 ? S" )  ""2 exP 

cVVtr) 2n 

exp 

t.+t.+t 

n f 2 
~^—^T 

D; exp 

r  „2   2 
K a 9 

n 

cos / co^yt^) * K ^2 (VV^^ * " ^-F^ " ^^ 

•^ 

a.a. 
^exp exp 

K a. 

• cos ( 

1      2      2,,        '  ^ 
aF + Op /2 

T .+t +tJ 

C(TJ+V
ti)2 

ÜJ
o(Tj+tr-ti) •'■• K ~2 (T^V*!^* - -iirL"i " ^^ (9) 

■ 

- 

where 

2    2,- 
o» a- /2 2      "F WT 

'C        ^ oT
Z/2 

(10) 

Equation (9) indicates that the delay t   necessary to maximize 

the signal component of a(t) is 

t   = t -t. 
r       ab 

With this adjustment of delay 

2 -, 2 o 
S(t) 1- -2   exp 

2t    t. 0F a    b 

(t-v^ r 
0F + CT /2 

(ID 

0| 

!J. 
2t F J TJ 

2-, 

exp  g 2— 
aF + aT /2 

exp 

2    2 
K a 

C (tx-Tj' -IT ^b-1^ 

D-6 

;: 



I 
i 

cos|(TJ.tb)[V K \ (t-VV llpL )]| 

: 

A o     r—, a A c 
Zr2exp 

2V    "F-t, 
exp 

t.+t     2 

—2—rr 
aF + aT /2 

exp 
^2    2 
K a 

(t,-^)' 

• cosjcvV^+K \ (t-t,). ^i)]| 

-. 

: 

4, a.a 

ZZr^ - Fi    dVTj 

•  [(Vta)-(TrtD)] 2i 

2a, 
exp 

t.+T,+t -t. 2 
(t -    i   ^   a    b - tD) 

oF top /2 

r        2      2 
K o. 

exp ir-[<VV-<VVl 

cos 
o 2 

{[<VV-<VVl [v K T? <* Vli^a-S     .   .ll - Mj (12) 

The signal component of z(t) clearly peaks at t = t + tn. The statistical 

properties of the random variable z(t + tD) are therefore of primary importance 

in any discussion of detector performance. The general expression for 

z(t + t ) is from Equation (12) 
a  D 

z(t +t  ) 
A2 o A c 

a  'D'        2t Zt 2    CTF a    b 

I 
I 
I 

'i'he statement that the output is observed at time t +t    implies selection 

of the proper range cell,  just as the choice t = t-t.   implies selection of 
I* 3      D 

the proper bearing cell.    If bearing and range are not known a priori, one 

must clearly examine all possible cells. 
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2ta  * ri 

^   2 
K a „1 

F    "T' 
■!r~vvA^j 

yTV^lVV-^VlUJ'v'sfrVri 
i   jVV     l 2«r i    ^       Wo/* ^/Z) J 

a   t -t.i c   a   i 
»o*T-J 

2 a, 
J   i    J 

r   v2_ 2 Ka     . ,ol fr TT Or     .t.-t T .-t        ) 
. exp. - -^[(t^tJ-CT.^)]2 cos   [(Vta)-(Trtb)][coo-K^2( V + VII 

1 )     [ CTF dS) 
For ease in later computations it will be convenient to distinguish 

between two cases: 

A) The bandwidth of the transmitted signal is determined primarily 

by the frequency modulation (KaT»l/aT). 

B) The bandwidth of the transmitted signal is determined by the pulse 

duration (no frequency modulation, K = 0), 

In case A) Equation (13) reduces to the expression 

.2        a 
z(t +tn) =     %    A — 

a   D        2t \2 CF a   b 

2ta   -5-^1/ 

b i   i 

2    2 
K a 

if2    2 r    K a_ 

cos i (vV[vl-2<VVl 

ir- 'V'a' ooMv'i'Lvf^'V'i'l 

o. ^—aa r    K232 l2        f f<Vta>,-<I1-tb,l2 

■ 

.. 

, 
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:: 

i 

i 

^{[(Va^A'Kvl-a (vvvv) (Ik) 

The equivalent expression for case B) is 

a(t +t. ) = 
a Ü   2t -t. ab      a    j j 

(VT,r 
cos (T.-t )ö> 

j  D  O 

A   
ac<rai 
aX-2 eXP 2tb- "F^t. 

(V^a^l 
2a 

cos (t.-t )a v i a' o 

• cos< (K ̂ MTj-t b^^o 

where 2 
a   «" e 

2.    2 
aT  (aF + ^T

2/2) 
2 

aF4 
2 

aT 

(15) 

(16) 

The firi term in each of the two equations (li;) and (l5)]is the signal 

component, the next two terms are due to the intermodulation of signal from 

one receiver and reverberation from the other, while the last term results 

from the intermodulation of the reverberation components. 

Several qualitative conclusions concerning detector performance can be 

drawn immediately from inspection of Equations (lit) and (l5)s 

1) If the signal is strong compared with the reverberation, the noise 

consists primarily of intermodulation products of signal with 

reverberation, and the last noise term can be omitted. 

2) If the signal is weak compared to the reverberation, the dominant 

noise term is the last. 

3) A coherent detector cross-correlates the output as a single receiver 

D-9 



essentially as a coherent detector when the signal to noise ratio 

is high.  When the signal to  noise ratio is low, its performance 

fectively range gated. In Equation (ik)  only scatterers located at 

c 
Ko 
c 

a range diflering from that of the target by no more than about j^- 

c 

2 
Note that t. is round trip time to scatterer i. Hence a range increment 

of s feet changes t by 28^ seconds. 
c 

D-10 

n 

against a properly delayed replica of the transmitted signal.    Its 

output therefore consists of the first two terms of Equation (ik) 

or (15).    It  follows that the instrumentation of Figure 1 behaves 

n 
is quite different and will be seen later to approximate more nearly 

that of an incoherent (power) detector. 

U) The intermodulation products of signal and reverberation are ef- 

contribute to the reverberctLoiif For Kac = 2Trx50 (about 100 cps 

transmitted bandwidth) this corresponds to a range variation of 

about 16 feet. In Equation (15) scatterers may deviate in range 

from the targe,, by roughly Zp a c. With a transmitted pulse of 

0.5 sec duration, this corresponds to a range variation of about 

lU5 feet. 

5) A  sonewhat more complicated range gating effect is present in the 

terms resulting from intermodulation of reverberation with reverber- 

ation. According to Equation (lU) significant contributions to 

the last te^m arise only when the following two inequalities are 

satisfied. 

. . 

'■ 

It will be shown later that tha cross-correlation between the second 
and third terms of Equations (ll*) and (15) is small under most conditions of 
practical Interest. Hence, under conditions of high signal to noise ratio, 
the instrumentation of Figure 1 may be replaced conceptually by a coherent de- 
tector operating in a background of reververatlon with twice the actual power. 
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"" 

.1 

.. 

: 

l(Vt.>-<VVl<is- c 

J 

The spatial region to whic'u these relations restrict the location of 

contributing scattered pairs is indicated by the crosshatched region of 

(17) 

(18) 

-c ^oF +aT /2 

Figure 2 

: 

i 
i 
i 

Figure 2. Note that the constraint is one on range only. Scatterer pairs 

having the proper range relation contribute reverberation regardless of their 

relative bearing.  The origin of Figure 2 denotes a scattenrpair such that 

scattenrl is located at the same range as the target relative to receiver a 

while scatterer J is located at the saine range as the target relative to 

receiver b. The total range variation allowed by the crosshatched area is 

If they are simultaneously illuminated by the transmitting beam. 
The beam parameters are introduced later by assigning angular dependence t0 

a. and A. 
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clearly of the order of V 2 c i/o +o /2 . Hoxever any given intermodulating 

pair can have a range differential no greater than c/Ko . 
c 

In the absence of frequency modulation [Equation (15)], the equivalent 

of Equations (17) and (18) is 

IW - ^rVI < V^T (19) 

and IW + ^rSH <2 \/oP
2+oT

2/2 (20) 

The region of contributing scatterer   pairs is shown in Figure 3. 

c \/ aF
2+aT

2/2 2(Vtb) 

-c / c JoF
2+oT

2/2 

\/pF
2V/2 

¥^ 

-c ^p
2

+oT
2/2-4\' 

Eitjure  ? 

6)    An interesting special case of 5)   [intermodulation of reverberation 

with reverberation]  arises when i=J.    This means that the returns from a 

particular scatterer to receivers a and b are intermodulating with each other. 

If a total of M scatterers is illuminated, the number of terms of this form 

is N whereas the number of modulation products of different scatterers is 
p 

N -N.    For large N the latter predominate and the former are of practical 

; 

. 

i , 

i 

.. 

• 

:: 
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interest only If the return frco one or more scatterers is particularly large. 

In other words, the case i«J is essentially that of false targets.   For 1«J 

Equation (17) can nov be decomposed Into the two expressions 

Ti<^-+(VV c 

Ti - *! < KT - (W c 

(21) 

(22) 

Similarly Equation (18) can be rewritten as follows 

ti + Ti * (ta+tb) + 2/0p2+0T2/2 
'■(' 

\*h>^j-2]ffaF'* 

(23) 

,th ct.  is the distance from transmitter to receiver a via the i     scatterer 

and cT.  is the dMtance from   transmitter to receiver b via scatterer i. 

It follows that Equations (21) and (22) define a pair of hyperbolas and 

Equations (23) and (2U) a pair of ellipses between which false targets 

must lie if they are to be a significant source of confusion.    These 

constraints on false target locations are illustrated in Figure k. 

2c c(t1-Ti)-§   ♦ (VOc 
B        c      « 

c(ti+T1)-2cta 

i-V^W 
2c 

" Ka 

cUj+T^ct^cWOp     2 



" 

Figure UA IS based on the assumption t =t.   (target broadside), while a    D 
o 

Figure UB shows the case * -'tx)>  j7— (target significantly clockwise frco 

broadside).    In each case the region from which false target returns may 

originate (crosshatched area) Is a pair of small curvilinear squares 

centered at the target location.    Thus, as feu* as false targets are concerned, 

the postulated Instrumentation introduces not only a range gating effect 

but also a gate in azimuth and elevation.      In practice the situation is 

actually likely to be simpler than suggested by Figure h, because the target 

is almost certain to be at a range which is large compared with the spacing 

between receivers a and b.    In that case the ellipses and hyperbolas 

degenerate into circles and radial straight lines respectively, as indicated 

in Figure 5.    It is now a simple matter of analytic geometry to determine 

the angular spread (Aß) which might 

contribute a false target return.    With 

a true target broadside (gs0) one obtains 
target 

Figure 5 

.  c/jKa ) 
2 sln^ -^for JJS- ^ d 

c 
r f or -£- > d 

CMKaJ K(Jc 
If r^- «1 

A(3 
12 sin 

I 
(25) 

i.e. if the correlation distance of the transmitted signal in the water 

is much smaller than the spacing between receivers, Equation {23) reduces to 

.    e/(Ka ) 
Aß ■ 2 T    radians 

With c/Ko   B 16 feet (as postulated before) and d = l6o feet, this leads 

to an effective aperture ae * 0.2 radians.    Another way of stating this 

(26) 

The significant region of false target locations in 3 dimensional 
space is, of courtie, the solid of revolution generated by rotating the 
crosshatched areas about the axis (a,b). 
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i 
i 
i 
i 
i 
i 
i 
i 
i 

result is that the postulated instrumentation is capable (regardless of beam 

pattern considerations) of resolving two targets separated in angle by 

about 0.1 radians. An expression equivalent to Equation (23) for ß^O 

assumes the form        , [c/Ko      i    -./c/Ko      \ 
Aß » sin [ d 

c + sin ß + sin"1 —^ - sin ß       (27) 

where each arc sine is interpreted as it/2 when its argument  exceeds unity. 

II. Probability Density of Scatterer Location 

The detector output z(t +t ) as described by Equations (Ik)  or (15) a   D 

is a random variable whose properties are dependent on scatterer location 

to the extent that scatterer position influences t.  and T..    In order to 

describe the statistical properties of 2(t +t. ) it is therefore necessary 
a 0 

to postulate a statistical model of scatterer distribution and to express 

the properties of t. and T. in terms of appropriate paramenteisof this model. 

There are two major sources of reverberation 

1) Scatterering centers distributed throughout the volume of water 

traversed by the signal (volume reverberation). 

2) Scatterering centers near the ocean surface or bottom (surface or 

bottom reverberation). 

For the punposes of this report the simplest possible assumptions will 

be made concerning the distribution of each type of scatterer. 

l) Volume reverberation. Consider a large volume V of ocean 

surrounding the source and including all of(but encompassing much more than) 

the volume illuminated by the source. The location of the 1  scatterer will 

be taken as a random variable uniformly distributed over V and independent 

of the location of any other scatterer. Thus the number N of scatterers in 

V has a Poisson distribution. Each scatterer is assumed to be stationary 

while illuminated by the transmitted pulse. The scatterer distribution 
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is described most simply in terms of a 

rectangular coordinate system. Consider 

such a system set up with origin at 

receiver a and receiver b located on 

-the y axis as shown in Figure 6. The 

probability that the i  scatterer lies 

^/x.^-d)2'       in [(vvV'tV^'V^'V^1 

Figure 6 is clearly (,1/V)(dxdydz). Transforming 

this result into a spherical coordinate system centered at receiver a as 

indicated in Figure 6, one obtains 

Pr {i  scatterer in (r, ,6. ,(j,. ) .(r.+dr.O.+de.^.+d* )} = :rr. sinO.drdOd* 

Hence the probability density of the i  scatterer location in spherical 

coordinates is 

pCr-.e.^.) 

1  2 . . — r. sinO. 
V i    i 

in V 

(29) 
0      elsewhere 

If, as a matter of computational convenience (and without influencing the 

results in any significant way), one assumes that the transmitter is located 

close to receiver a ,then 

t 
2 
— r. 

i  c i 
(30) 

Hence the Joint probability density of t.,0.  and $.  is 

3 

p(t. ,e.,()).) = 
iv ti2 sin ei   in ^ 

(31) 

0      elsewhere 

where x is the space equivalent of V under the transformation (30). 

2) Surface reverberation. The scatterers are now distributed in the 
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immediate vicinity of a plane  (the average surface or bottom) which will 

be taken as parallel to the xy plane of Figure 6.     If Q is an area on the 

surface much larger than that illuminated by the beam and if one assumes 

uniform and independent distribution of scatterers in the x and y directions 

one can write 

th 11 (Zi-c)2'! 
Pr fi      scatterers  in  (x. ,y. ,z.) ,(x.+dx. ,y.+dy. ,z.+dz.) >  = — r-=i1exp '" ' 

2A2 

• dx.dy.dz.     (32) 

D is the depth of the array relative to the average surface and & is the 

vertical rms spread of scatterer locations.  The Gaussian distribution in 

z is of course an arbitrary model. Variations in the parameter & can be 

used to introduce some of the effects of surface roughness. Since scatterer 

location enters the expression for the received siptnal only via the time 

delays t. and T , it is clear that vertical spreads A small compared with 
*    J 

the effective illuminated area have little effect on the return signal. 

The z distribution then degenerates effectively into a delta function at 

z=D. This simplification will be introduced at an appropriate point later 

in the analysis. It should also be pointed out that the primitive model 

of reverberation used in this report ignores the time dependence of scatterer 

locations. 

Transformation into spherical coordinates converts Equation (32) into 

the expression 

p(r.,ei,$i) «^ 

f (ricosOi-D)2l 

iik '"t ^j ^2*a        I 
2 

r.  sinO. in Q 
ii 

(33) 

V 
0 elsewhere 

which is the equivalent of Equation (29) for surface reverberation.    Finally 

the transformation  (30) yields 
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3  ,      ' ^ t.cosO.-D)21 
c"  1 
5Q,.=^ 

exp 2 i 2 — 
t. sinO.    in Y 
i    i 

0 elsewhere 

where Y Is the space equivalent to Q under the transformation (30) 

x.  +y.  +z. 

where use has been made of the assumption d<<r. .    In view of the fact that 

The travel time of sound from the i      scatterer to receivers a and b 

is r./c and R,/c respectively.     Thus, assuming the source to be located near 

receiver a 

T,  = t. + — sinO,  sin*. (37) lie i        vi 

III.    Average Detector Output 

The DC output of the detector is the expected value of Equations (1**) 

or (15).    In each case it consists of a signal component 

.2        o 
E{z(t +tj)l   .       ,   =  ~-r   — (38) a   D"'signal      2t 2t 2    aF 

a    b 
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0 
The Joint distribution of t.,0., and (f. is sufficient for the computation 

of all reverberation statistics because the random variable T. can be 1 il 
expressed in terms of t.,0., and $. by simple geometrical reasoning. From 

Figure 6 . ^ , 

/ g  g g'  r? 2—~2' / 2^r&            -v, dy -dV2 
R. =-i/x,2+z.2+(y.-d)2 =^x.2+y.2+z.2-1/l-   ' = r- S r.- —i      (35) 
i  U i  i  'i '   f i 'x  i /   2^ 2t 2 i    r. 

'                         /  x_. +y. +z. i 

: 
the only scatterers contributing to the reverberation are located at ap- 

proximately the same range as the target, this assumption should not introduce 

•  ■ n any significant error. 

Omitting d /(2r.) as    negligible compared with r.  and transforming 

to spherical coordinates, one obtains il 

R. = r. + d sinO.  sin*. (36) .-. 
ii i        vi 
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and a noise component.    The second and third terms of Equations (lU) and (15) 

make no significant contributions to the average, because w >>Ka»—r- 
e 

so that one can invoke the Rieraann-Lebesgue lemma.    For the same reason 

all terms of the double sum for which i^J can be ignored.    Thus for case 

A) [bandwidth determined by frequency modulation] 

0    r—> 

E{z(W>lnoise = 2l<L
E 

Fi 

rr      2 a. KV 
^exp    --^[(t.-^MT.-^)]' 

n}iS'   ' L 

exP<- 
r[(Vta)+(Ti-tb)]' 

MoF
2
+aT

2 ) 
»cos 

o 2 

^(trta).(Trtb)](Uo+|-%(Vti.VT1.)]j 

2 <^ 

T.  is now expressed in terms of t., 0. , and ♦. by use of Equation (37). 

Similarly t.   can be written as 

t,   = t   + — sine    sin<f b       a     c o o 

where *    and 0   measure target bearing and elevation respectively.    For 

volume reverberation the relevant probability distribution is given by 

Equation (31).    Substituting Equations (31),  (37), and (1*0) into Equation 

(39) one obtains an expression which must be integrated over the variables 

t.,^,, and 0..    The result of the t.  integration is (after considerable 

algebraic manipulation) 

2 

(*0) 

oo 21 

Om O 

J Z(VtD)| p(t..e.^i)dti .^(a/^) ^k Sinei ^2 
-co noise i a 

,K2a2d2 

exp)-(sinO sinQ -sinQ.sin^i.)  r—^ cos    —- (sine  »sin^i -sinö.sin^. )| 
; 0        0 l       *■       fiel        L 0 0 1 

i 

du 

(uir 

The second exponential in Equation (39)  differs significantly from zero 
only over an Interval roughly equal to the pulse length, centered at 2t   .    Hence 
the limltw of integration can be taken as  (-oo ,oo) and a    /T      can be replaced 
by a    /t      without introducing appreciable error. 
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Before the ^, and 0. integrations can be performed, it is necessary 

to recall that the coefficient a. determines the power returned from the 

th i      scatterer.    a^  is therefore dependent on the beam pattern of the trans- 

mitter and receiver.    This relationship is now made explicit by the following 

expression 

2 ^i2 r (w2 
a
i = si^.expr-T2~  iexp 

1    L   Bo      J 

i    o 

B.2 
(U2)1 

B0 and B. measure the pattern width in the 9 and $ direction respectively 

while b.   is the scattering cross-section of the i      scatterer.    Equation (U2) 
2 

assumes that the beam pattern is centered at the target. 

If the beam dimensions B. and B.  are small compared to one radian, one 

can approximate the sinusoidal functions in Equation [hi) by the linear 

term    of the Taylor Series expansion. 

sine.sin({i.  * sinO sin^i    + cosO simj) (6.-6 ) + sinö COB*  U.-* )   . {^3) 

The averaging operation in 0.  extends over (O.n) while that in ♦.  covers a 

full two radians.    The narrow beam patterns already postulated enable one 

to extend the limits of integration to (-oo, oo)  except  for values of 0 

near 0 and TT (straight up and straight down).    Since these particular 

directions are of little practical interest, the complications arising near 

Qt:=0 or TT will be ignored, 
o 

The factor sinö.  in the denominator reflects the fact that the 

; 

■• 

■ 

: 

3 

dimension of a fixed element of area varlas inversely with sinO. Hence 
for large B and B Equation {U2)  corresponds to uniform illumination on 
any sphere about the transmitter. 

2 
If one thinks of a transmitter operating under an average power 

constraint, it might be reasonable to postulate that the total radiated 
power is fixed so that the target powtr would vary inversely as BQB . 
Such an assumption is easily incorporated into the analysis by dividing the 
right side of Equation (W) by B B .  As it stands Equation (42) implies that 
the power returned from the target Is independent of B,. and B ,. 
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The actual integrations are tedious but quite straightforward.    The 

result,  after extensive algebraic  simplificationj is 

oo      IT      n I 21 /   N      2 

Jdt.JdQ.Jd*.   z(ta+tD)| p(ti>ei^i)   =f ^F
2+ "f) jtkiLft 

-oo      o    -n noise \ i=l la 

"Vi. 

1 + 
K^Orp   d   p 

exp^ 
*Z    2 
d u 

o 

ko2 J2.    2,2 2 KaT d p 
1 + _^L    j 

(U) 

where 
2 2      2 2 2      2 2 

P ' = B,  sin © cos ((i    + B-  cos 0 sin ^   ■ 
o o o 0 O 0 

(1*5) 

2 Equation  (UU)  contains two random variables, the scatterer cross section b. 

and N, the number of scatterers in the volume V.    Designating the average 

scatterer cross section as  sb / and postulating an average of K   scatterers 

per unit volume the expected value of the detector output noise becomes finally 

E{z(ta+tD)}| 
t%(aF^oT

2/2)    oc Kyc- 

"Tl    2^:<b> "T 

exp 

noise 

A2    2 
d oo 

o 

fl+ 
K aTd p 

8c' 

Uc' „2    2,2 2 K oT d p 
1+ 

(1*6) 

8c' 

2    2 2 2 2 
If (K o_ d p  )/(8c ) >> 1 the argument of the exponential function 

I 

becomes - -£-0  = -2 earner frequency magnitude of this ratio 
„2 2    transmitted bandwidth      ^ 
iraT 

is almost certain to be large compared to unity so that the DC output due 

to noise is negligible. If (KaTd p )/(8c ) « 1 the argument of the 

I 

I 
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exponential becomes - 

,2 2 2 
d "o P 

Uc2 
For d=100 ft., u» • 2w X 3500 rad/sec, and 

2 2  2      2 
c ■ 5000 ft/sec, d u) /Uc = (70w) • Hence the exponential is of an order 

-10     2 
no larger than e   for p » 0.0002. Snail values of p occur near 0 =0, 

A »0, and 0 « ♦ 5- , A = ♦ £ . Only the latter combination is of practical T
O        O — 2    O — 2 

interest. Postulatinf: B »B =0.1 and working with the extrene case, 6 = ^ , 

one concludes that the average noise output is very small unless the system 

is trained on a tar^ot no more than 8° from the ondfire direction. The 

appearance tf a DC  component of noise near the endfirc direction is reasonable, 

for in that condition the difference in signal travel tine to the two receivers 

is very nearly the some for any point in the illuminated VOIUPC. In other 

words, because of poor directivity near endfire, the detector is unable to 

distinguish between a point target and a volumetric distribution of scuttercrs. 

In effect it reports the accumulated return fron all those gcatterers which 

it is unable to resolve as an equivalent target. 

The derivation of the average noise output in the absence of frequency 

modulation (case B) follows the same pattern and leads to the result 

3 -J7( 
{z(VtD)}|     -v_ 

noise 

qF *qT /2) 0c /v2v V  *Vj 

1+ 
On2     2 
2c oT 

(it?) 

2 2    2 2 2222 
When (d p )/l2c'a„ )  << 1  the exponent reduces to -(d u p )/{kc  )  as 

Caution is in order in any quantitative use of Kquation (U6) very close 
to the endfire direction, for the use of only linear terns in Equation (US) 
becomes inappropriate for 0 and 4 within BA and B of (6 = — , 6 = x) • 

O      O 9      9      O  c    O  c 
Higher order terms must be included if quantitatively accurate results are 
desired. 

n 

4 

il 

- • 

- 
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under the equivalent approximation on Equation (k6)  so that the previous 

comments ooncerning DC noise output near the endfire condition remain ap- 

plicable. 

Equivalent results for surface reverberation could be obtained by uaing 

the distribution of Equation (31*)  in place of Equation (31).    The ccmputation 

is quite tedious and was Judged to be of limited interest in view of the 

anticipated negligible value in all but the extreme endfire direction. 

IV.    Detector Output Variance 

In order to evaluate the performance of the detector, it is necessary 

to compute the output fluctuation as well as the average output.    Since the 

signal component of Equations (Ik) and (15) is a constant, the fluctuation is 

entirely due to the noise.    For the frequency modulated case [case (A)] one 

obtains from Equation (lU) 

.2    o. 

noise       a    0F      J    J' J  V 

KV
2 

r-t<VV2+(VV2]i 
V. 

cos< 

/ 

> co^VVVl-T(tb-V] 
0
F 

@ 

P      2^<L.  2.     i 
ktj aF    i    i' ti ti' 

exp 
K2^2 

r-KW^V-V2! 

cos< 
K    Gc 

ijZlll 

'F 

aial,a.1aJ'   . 

aF 

>® 

' t 2t2T 2T    2 
exp --^(VV-'V^V^'VV12}] 
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>expi 
(ti^rta-tb) ^^'^.r^a-S^ 

HaT
2*oT

2/2) 

K0c cos »ftJ-(^ 1 [ogf -Vt.t^-Tj) ] 

K0c 
• cos [(ti(-ta)-(Tj|.tb)l[tto+|-^(ta-ti,+t1>-TJ.)l 

A2     'c 
2    2      2 Z Z^r «4 "^ I<VTl>^*(vt•)^, 

0 

•COSi 

.2    o. 

(T4-tJ[t .K0c 
'J    b,iU,o 2     2 x b 'J 

0P 

K0c (tv-T4))  cos^ (t -t, Hu*--^ (t.-t, a a 'i'^o 2     2 xva tjil 

2     2 ^Z^Z^        2    2      2    eXp 

2ta   0P     i    J    J'    *! TJ TJ' 

.2 

»exp 
(tl^-ta-tl>) 

U(aF
2+oT

2/2) 
COSi t(Vt

a
)-(T

J-
tb)H'-o+l^2 (VVT

J
+tb)1 (^ 

• cos< 

p 

.2 o. 

^b    aP      i    J    i« ti TJ *!• 

IT i^o2 f 
^i.-V 

•exp- u\r LM HI(vta)-(Trtb)1[tto+l7?(vvT
J
+tb,1l 

[0**0*12) 
w 

K    c 
.cos^t^Jf^+l— (V*!'^? ' J 

(48) 

i 

■ 

■■ 

^1 

■ 

öl : 

OS 
• » 
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Because of the odd number of indices involved in terms® and© one 

can immediately invoke the Riemann-Lcbesgue lemma and assert that these 

terms make no significant  contribution to the mean squerc  vilue.    Similar 

considerations lead to the conclusion that contributions from other terms 

arise only for the following combinations of indices. 

termO); j-J' 

term© :  i=i' 

term(|):  i^',J=J ' ,i*J 

i^i'^'.^i' 

i^'.J'i'.i*) 

I'i^J^' 

term®:  i=J 

The actual performance of the averaging operations is exceedingly 

cumbersome but basically straightforward.    With approximations similar to 

those used in Section III one obtains in the case of volume reverberation 

the following result for the variance of z(t +t-) 

D2{z(vt   )}a   A^!c 
c Kc.  ffVoV + 3. 0c2      oS 0>h\,2tt^2.$tä12 

72    512    ^   Kv " % \ Koc 

F a 

1 + 
r ^2 2 
'      d (11 

„2    2.2 21  exp 

K aT d p 2c ^ 2.2 2 

1 + 
'oT d p 

1? 

I 
I 

t 
cc      n        3<b^ 

0F K 
6 Wei/ 2 * (oF

2
+oT

2/2) 

a2^=V^B.B, 

1   + 

^ 2.2 2' K 0    dp 

VÖF 
Ko    41 e 

c ITa d p 
1+ 

60" 
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exp 
^2    2 

0 

ko2 „2    2.2 2 K a    dp c 1+ 
6c' 

(U9) 
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'Ebe  exponeutial terms are all similar in form to Equation (1*6) and 

are therefore neglfeible except very near to horizontal and endfire. When 

they are negligible Equation (U9) reduces to 

.2,  ,.  ...  s.      A' 
2 

8c2 
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The first term of Equation (50) represents the power of the intermodulation 

products of signal with the returns from various scatterers [termsO and© 

of Equation (U8)].    The second term results from the intermodulation of the 

returns from different scatterers (term(Ü i-i'»J-J*.i^J in Equation (U8)] 

while the last term gives the iotal power of intermodulation products from the 

same scatterer (false target power)  [term(Di isj^i'sj'  in Equation (U8)]. 

The radical in the denominator of the last term reflects the bearing dis- 

crimination against false targets discussed qualitatively in Section I. 

Comparison   of the last two terms reveals that the last term is likely to be 

small compared with the second unless the scatterer density in the illuminated 

volume is very low (a situation in which the reverberation is composed of 

returns from a few strong scatterers - which may clearly be regarded as false 

targets). 

In the absence of frequency modulation a completely analogous 

computation leads to the follwoing equivalent of Equation (50) 

'i i 
1] 

■ 

: 

:: 



T 

2 0      0 "5       ^ 

D2{z(VtD)> - Op ^!£_n2 K^B, 
iji''00e 

■; =!<b52 3. .  'C     OEZ.   3V- W^P 2 'eiL 2X  2/9 
ap^ 512 t u      w ^^» i-  i 

: 

vf^e^friV'TW^Hh (51) 

2 2 c o e 

When the primary noise source is surface reverberation p(t.,8.,^.) is given 

by Equation (S1*). The averaging operation of Equation (U8) with respect 

to this distribution is basically straightforward but even more cumbersome 

than the corresponding computation for volume reverberation. It has been 

carried out only for terms® , (D , and@with i^', i'i',  i^J-and under the 

assumption that the vertical dispersion A of scatterers satisfies 

:: 

i 

A/ sine, c 

ctj/2 
« B, (52) 

Equation (52) demands that A/sinO    subtend an angle small compared to 

B- at the source [see Figure 7],    The approximation implied by Equation (52) 

DE.tane        co0 6 O  -        Ö 

effective range gate 

range to surface at beam center = ^^Q £ ""jj 
ct D    _      s 

vangle subtended by    .    Q sin ö 

Figure  7 
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a  UF 

(t -t )2 

and 

aQ =  c cose0 (55) 

o 

Thus t is the signal round trip time between the source and the point 

on the surface at the center of the beam. Similarly o0 is the differential 

(nominally t ) is close to the signal round trip time to the target (t ). 
S ex 

I  8lfB„ 
,2 2    ro    o    o 

e ' 
term has been omitted as negligible under most reasonable operating conditions 
particularly when D%d. 
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' 
clearly improves with range. For realistic beam widtteit should be excellent 

except at extremely small ranges. 

With the stated approximations the averaging operations lead to the 

following result, equivalent to the first two (generally dominant) terms of 

Equation (50) 

D2{z(t +tn)} = ^4 -£- fl- B <b> K J- expi- ^sZii. I n I 
a D   I6t 7 a* sineo * ^ 8 ^c      a*   I 

,   n2   cU °c2 B 2 0
2>2Ks2 1  /^FV/^2

    f     (ta-ts)
2   1 

^128  ^ 0F
2
 *  sin2^ ^   (*>//*)< "X l<°FV^J 

(53)^" In this equation K is the number of surface scatterers per unit area, s • J 

o 

^    ! 

1 in round trip time between surface returns from the center of the beam and 

surface returns from the nominal edge (6 +BQ) of the beam.    [See Figure 7]. 

The most obvious difference between surface and volume reverberation 

as expressed by Equations (50)  and (53) is the presence of the exponential 

terms in Equation (53).    These simply reflect the fact that surface rever- 

beration    if a problem only when the signal round trip time to the surface 

n 

D 

1 \ a2 2 h k   \ 
A factor of the form exp<- —5—5- sin ^cos S^cot S^f in the second 

0 

:: 
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■; 

i 
i 
i 

It is interesting to observe that the allowed time differential t -t    is of 
as 

the order of OQ for the noise component resulting from intermodulation of 

signal with reverberation while the differential t -t can be as large as 
&  8 

/ 2  &    2 
Uo_ +o_ /2+oö for the intermodulation products of reverberation with rever- 

beration. Thus the use of very long pulses may create a surface reverberation 

problem at ranges where it would not otherwise exist if the dominant component 

of Equation (53) for t ='t is the second term (low signal to noise ratio). 
£L  S 

This difficulty does not arise when the first term dominates (high signal to 

noise ratio). The physical explanation for t'.is phenomenon is simplerlhe frequenc- 

moduiatlon imposes a narrow range gate on reverberation (see Section I). 

Only scatterers located such that the travel time of the signal to them is 

almost exactly the some as the travel time to the target can contribute to 

the intermodulation product of signal and reverberation. Whether the group 

1 
of soatterers at suitable ranges does, in fact, contribute reverberation 

depends only on whether they lie within the illuminated surface area.    This 

is purely a matter of geometry and independent of the pulse length.    Inter- 

modulation of reverberation with reverberation, on the other hand, occurs 

for any scatterer pair separated from each other by no more than the effective 

range gate.    Whether a particular combination contributes reverberation at 

the observation time (t +tr.) therefore depends both on whether it received 

illumination and on when it received illumination,  i.e.  on both geometry and 

pulse length. 

Another interesting point of comparison between volume and surface 

reverberation is the radical in the second terms of Equations (5r) and (53) 

2 2      ? respectively.    When o      >>  (a„ +om"/2) the radical in Equation (53) reduces 
9 I* i 
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_                                                            128 äSCO 
(Ss  _        c 

Vo" I h_6^2\2„ 2 3^ 2^ 2 r 2.    2/^'f.,  16   A2 ^  ta^v%VfPV« 
(56) 

A simple computation from Equation (U) gives the average reverberation 

D-30 
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~T 

:: 

i 

I      2       2*1 
to »^»Op "♦■Om /2.        Thus the reverberation power is limited by the pulse 

2 2      2 duration, as in the case of volume reverberation.    When o0 <<(ac, +0™ /2) 

the radical in Equation (53) reduces to ^2oe.    Thus further increases in 

pulse length do not increase the peak surface reverberation power.    This is, 

of course,  reasonable because the pulse duration is now sufficiently large 

for reverberation from the entire illuminated surface area to reach the receive 

simulaneously. 

Additional differences between volume and surface reverberation concern 

-6 -l* -7 * * 
the t    dependence (t "    and t ""   with volume reverberation versus t ~    and 

GL fi, a S, 
-6 

t   with surface, reverberation) and the appearance of the factors sinO a *-*- 0 11 
2 

and sin 0 in the case of surface reverberation. These differences are o 

attributable to the different rate of growth with range of the number of ,. 

scatterers contributing reverberation in the two cases. .-• 

V. Output Signal to Noise Ratio 

The effectiveness of the detector is characterized by the relation of 

its output signal to noise ratio with the signal to noise ratio existing in 

the water. The output signal power is simply the square of the first term 

of Equation (13)- Using t =t.   one obtains from Equation (13) and the first 
CL  D 

two terms of Equation (50) (volume reverberation, frequency modulated signal) 

n 
11 

i 
The effective integration time o- of the low-pass filter should clearly y 

be of the order of the pulse width o_. A more precise optimum will be obtained 
later. _ 



t 
I 

power at eaob receiver. 

'* ^   c
3<b2> 

Avera«o reverberation power *{~)2    y- —2 oT ^A (57^ 

•; 

1 
1 

t a 
% 2      Ij If t *t.   the peak signal power at each receiver is A /t    . a   b 

Hence 

(|),_ .     -     . 1^/  (58) 

-| ^     (^«C^.VM 
Thus Equation (56) con be rewritten in the form 

Wo     TT aT(Koc) /   ^.    !J    '    = (59) 

Several features of this expression are interesting. 

0T S 
When ,   .j     .j   . (^)in « 1 

fp +aT /2 

rSs    i 1        ,„ 0T ,8x2 
(|)o^aT(Kac)/S=%=T    (|)%n (60) 

\/0F +0T /2 

0T ,8, 
When /   .;     ij   ■    (jf^in >> i 

fi^ftz 

$oH\^  (|)ln (61) 

Using the definition of 0    [Equation (10)]  it is a simple matter to determine 

the optimum o„ for either case.    From Equation (60) one obtains 

ap-^ (62) 

The optimum a-, in Equation (6l) is infinite. However, it is clear from 
r 

Equation (10) that only small gains in output signal to noise ratio can be 

2      2 
made by increasing a-    above a, /2. Equation (62) therefore gives a suitable 
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value of o for all Input signal to noise ratios.  With this choice 
r 

o 
T 

2+ 2/9 
(63) 

The presence of ambient noise - Ignored thus far - would also mitigate 
agairßt a choice of effective smoothing times o much larger than the duration 
of the demodulated signal pulse. 
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so that Equations (60) and (61) nay now be interpreted as follows: 

When the input signal to noise ratio is less than unity, the output .. 

signal to noise ratio varies with the square of the input signal to noise 

ratio, a type of behavior generally associated with Incoherent detection. 

When the input signal to noise ratio exceeds unity, the output signal to noise 

ratio varies linearly with the Input signal to noise ratio, a characteristic 

typical of coherent detection schemes. Equation (61) is. In fact, simply 

one-half of the output signal to noise ratio of a coherent detector (du- 

tuodulatlng the output of a single receiver against a delayed replica of the 

transmitted signal). The factor of one-half is due to the presence of noise 

in each channel of the correlation detector. The replica used In the coherent 

detector Is, of course, noise-free. Equation (59) with oF"oT/2, KoT"2n x 100, 

and O-'O.S Is plotted In Figure (8). Also shown is the corresponding curve 

for the coherent detector. If one chooses an output signal to noise ratio 

of 6 db as the mimlmum level at which some significant detection capability 

may be said to exist, Figure (8) indicates that the correlation detector requires 

about 8 db more input signal to noise ratio than the coherent detector to achlevt 

this minimal performance. Even If one penalizes the coherent detector by 3 

db on the grounds that the postulated knowledge concerning carrier phase is 

almost certainly unavailable in practice, there remains a differential of 

about 5 db. 
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Signal duration to signal correlation time. It can be made substantial by 

the use of wide signal bandwidths. It is, of course, nothing more than the 

quantitative expression of the range gating effect discussed earlier. 

In the absence of frequency modulation the equivalent of Equation (59) is 

With a =.7» (66) 

o_.    Thus, from Equation (58) 

'I'm • \ <*> 
Hence in the presence of frequency modulation [Equation (59)] 

Ka 

N o 

-4-I   ^I'in«1 

Kac = |aTfor(|)in»l 

(68) 
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The factor oT(Ko  ) appearing in Equation  (59) can be rewritten 

T' 

Since Ko», is a direct measure of the signal bandwidth, its inverse may T 

be interpreted as the correlation time of the signal (and hence of the 

reverberation). The"proce3sing gain" factor (6U) in  therefore the ratio of 

- • 

:; 

* * 

,Sv2 
ls\    - 1       gT Vin (c^ 

Y    7? 

the "processing gain"  is of the order of unity.    All other comments concerning 

Equation (59) apply to Equation (65) also. 

In order to avoid misinterpretation of Equations  (59) and (65) it should, 

perhaps, be pointed .out that the input signal to noise is also a function of 
• - 

Q; 

0 
n 

.. 
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Tn the ubstsnee of frequency modulation [Equation (65)] 

(|)0 -     T (69) 

The use of short pulses is advanfcageouB in the absence of frequency modulation 

because the bandwidth (and hence the range gating effect) is determined 

exlusively by a„.    In the presence of frequency modulation pulse length 

is a secondary factor, for the rise in bandwidth offsets the decrease in 

input signal to noise ratio accompanying an increase in o,.. For fixed band- 

width (fixed Ka») the output signal to noise ratio increases monotonically 

as aT decreases. Thus the use of short pulses (with large values of K to 

maintain constant bandwidth) is indicated. However, once the input signal 

to noise ratio exceeds unity, further decreases in aT cause only a small 

increase in output signal to noise ratio. 

In the case of surface reverberation the signal to noise ratio is critically 

2    2 
dependent on the exponential factors in Equation (53). When (t -t ) << aQ 

both of these factors are close to unity and one obtains the following 

equivalent of Equation (59) (frequency modulated signal) 

2.1  2/0j_ 2A 2' ,Sv2 
1 VT yqT /2*CF *ga  ,„„ v JTir 

xl'  * '  üw 3T! ^ V in 

,S v _ 1 W9"T ^T '" VF "9   ,„ ,   vN'in    l7n) 
(üJ * 17   in ^ 1 ^ ÖT (KaÄ)  1 ^   2      2 <    '' ' 

*1     3   as==3aga!! j1  ' g ■' 
'^ = r f/n.c/n^,2^) (Ko=)    „»W'     iS 

With oF 
a o„/>/T this result reduces to 

,/2" 2'        fSx 2 
,Sv a 1 ,„ . qeVpT +ge Vin 
{Wo - IT 0T(Kac) IT—2 r^^ 

°Tr/2+a*'      l + 2&lai+a9        (S-) 1 * t™ 1     2   2 Vin 
aT /2+ae 
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When oT « oe 

■ 

gK 
2      2* 

, aeVaT +ae    ^    ,     , oT(Koc) -Sp 1-   = oT(Kac) (72) 
aT /2+ae 

so that the "processing gain" is the same as with volume reverberation.    On 

the other hand, when o™ » o0 

I    2x    21 

^Koc)      2'     2   ■2q
9
(Kqc) 

oT /2+ae 

(73) 

Thus the "processing gain" rises with increasing pulse length to a maximum 

determined by the geometry of the illuminated surface area.    As in the case\ 

of volume reverberation, this ö    dependence is somewhat deceptive because 

of the 6- dependence of the input signal to noise ratio.    For surface rever- 

beration 

^in ' 

' i-   for oT «    ae 

-   for aT »   ae 

(7M 

• 

:: 

.. 

S     S  2 
Hence for low input signal to noise ratios [(=•) « (rr).  ] N o   IJ in 

/  K, 

(|'o- < 

'c _ K    a ^0 
^ " 2 for T 

<< e 

Kac   KcT 
K-#   ™ 

n        -   2n     f0r 0T >> ae J 
'6   ~u0 

Thus the output signal to noise ratio increases with pulse duration only 

when o_, exceeds o0i i.e. the entire surface area within the beam receives 

illumination simultaneously. 

s   s 
For high input signal to noise ratios [(«3- a (jj^irJ one finds 
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^o - 0T (76) 

for all values of 0J/0Q-    These observations are, of course, also evident from 

Equation (53). 

When aT » aQ and the target Is so located that oA « t -t « T    9 a 0   a s 

I    2  2    2* 
WOp +oT /2+a-  the first exponential term in Equation (53) vanishes while the 

the second assumes a value close to unity. 

In that case 

(I) 
2 I    2    2  2* 

i VT yq
T /2+q»+og F    e 

N'O   4 r~7~rr.—z 
^aTV2+o/)(aTV2+oö

iJ) 
(Koc) <l>2in (77) 

or with a_ ■ aT//T 

>{° rS . . i _ (Kn .  g9V0T +09  ,S,2 
(No) ■A0!^^ ~2—2    ^in oT /2+o 

(78) 

Thus, it is possible to find operating conditions under which the output signal 

to noise ratio varies with the square of the input signal to noise ratio for 

all values of input signal to noise ratio. 

VI. Comparison With Detector Operating in Ambient Noise Limited Environment 

Throughout tue preceding discussion the received noise was assumed to 

consist exluslvely of reverberation. It will be interesting, for purposes of 

comparison, to evaluate now the performance of the same receiver in a noise 

environment consisting predominantly of ambient noise. The ambient noise will 

be regarded as a stationary Gaussian random process with the power spectrum. 

S(ü)) - N ^ exp 
(to-ü) )' 

o 
+ exp 

((Ü+U) )' 
0 

(79) 

or the autocorrelation function 
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R(T) ■ I S(a)) cos uTdu = /7 fi N exp 

o 2 2 
fiNT 

•COSU T 
o 

(80) 

One may think of N as the spectal level of a broadband noise whose 

spectrum Is being shaped by a bandpass filter of halfwldth vTn centered at 

frequency u . In practice, this filter might be the inherent frequency response 

characteristic of the receiving hydrophones or it might be a narrower filter 

Inserted into the hydropoone outputs to discriminate against frequencies outside 

of the signal range. 

If one designates the noise appearing at the two receiver outputs as 

n (t) and n. (t) respectively, then from Figure 1 and Equation (1) 

y(t) - exp 

exp 

(t^r 
o 2 
T 

cos 
o   a   2    a + n (t) a 

(t-VtJ 
£ J co«[Ü,o(t"tb"tr) +l(t-tb-tr)2 + nb(t)^ (81) 

The detector output z(t) is related to y(t) through Equation (6), 

the low pass filter weighting function w(t) being specified by Equation (7). 

The signal component of z(t) is the same as in the reverberation limited case. 

With t «t -t. the noise component assumes the form 

z(t) 
noise 

oo 

7t/' dpw(p) exp 
a o 

(t-ta.p)
2l 

cos «0(t-ta-p) + f (t-ta -p)^^.^) 

00 

+ —2  I dPwtP) exP 
tb  o 

(t-Vp) 21 

cos "o^'V^ + 2 (t-ta-p)
2|n,Ctp) 1-* 

Any such filter Is assumed to be sufficiently broad so that it will have 

negligible effect on the signal. 
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oo 

/ 
+ I dpw(p) na(t-p)nb(t-p) (82) 

If receivers a and b are separated by more than a very few feet, It Is 

probably reasonable to assume that n (t) and n. (t) are statically Independent. 

It also appears reasonable to assume that each noise component has zero mean. 

In that case the expected value of z(t)  Is zero and Its variance Is simply 

the sum of the mean square values of the three terms In Equation (82). Thus 

oo oo 

1)2 fW ""^4 / dp[dow(p)w(c) exp 

a  o  o 

C08^0(tD 

(tD-pr 
exp< 

Vor 

p) + 2  (^-P) 1 cos u^V-crt+f (tD-a)
2 

R(o-p) 

00  00 
(tD-p)' 

—^ I dp ; dow(p)w(o) exp/ - —T- 

b  o  o 

exp< - 
(tD-a)' 

cos ̂ o(tD-P) +f (tD-p)
2l cos^o(tD-a) +| (tD-a)

; R(a-p) 

00   00 

N' 4 I do / daw(p)w(a) R (a-p) 

o  o 

(83) 

where R(T) is given by Equation (80) . The first two terms differ only In 

4      4 
the attenuation factor A/t  vs A/t, 

a      b 
Since t ■ t. for all cases of Interest 

a   b 

this difference will be ignored. The averaging operation can: now be performed 

without difficulty, After algebraic simplification the result is 

I2 

t 

D2
KV! 

=
7T¥ 

aT \/?— 
a a 

f sV 
- , 2 j-j ; + i 2—7> 

F / (a +o  ) ,    9 2 2 1/ 1 + 0F ßN 

The output signal power is still given by the square of the first term 
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of Equation (13).     Hence 

2 A4.!.      1 

^o - 2 — ßN0F 
0F 

°*\2 
F    N 

"t  8«N
2N  2 

a    N    o 
1 + 

2Q..2 

F    N .2A!I!I 

^*°l    ^V>2      2      2      2      2     2    2 ' * "Vl ^N
2(cT

2
+aF

2)+K2aF
2aT 

T    F (85) 

The input signal to noise ratio at each receiver is easily computed to be 

.2 
(i)  -_ 
Vin  . 4 

a   No 

(86) 

The output signal to noise ratio can now be written in a form equivalent 

to that of Equations (59) and (65) 

■ 

2_ 2 
F 

'•N;ln 

*■        T*   ..     ..>,,■■-. i      > »,     ,  ■■-■ 

(87) 

1 vN''ln 
(       24.   h2 

\0m  "'■O- /     9   ?   9    9  7  2 

4 -1^+ 20/(0 2^Z)+KVV 
aT aF 

In order to obtain a comparison with the reverberation limited case, it 

is necessary to select a suitable value for the noise spectral width ßN. 

The best value for this purpose is that which gives the ambient noise spectrum 

the form of the reverberation spectrum. 

The reverberation autocorrelation can be obtained from Equation (3) 

Rrev(T> " ^ 
exp 

(t-t^ 
2, 

exp 
(t+T-t ) 

2-, 

cos [v'-v +I <t-ti) COS ^(t+T-tj) + | (t+T-tj)2 (88) 
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Carrying out the averaging operation over all random variables one obtains 

3 
,2    2 

2 f] R-<'>-wf^w^-j-lv^)' CO8ü)0T (89) 

Thus the reverberation autocorrelation function    Equation (89)1 and the 

ambient noise autocorrelation function are identical in form if 

%-v/-i2+-f- (90)1 

With this value of a. Equation (87) becomes 

T 2      
fS\ 1 0c  1 1    2~ 2^2 4 2' 

Ö 

2 (|)2 

 Vin 
-(91) 

oF  T ' ^   '    ^ r 2   2 2 4 2' 

It is a simple matter to demonstrate that Equation (91) reduces to Equation 

(59) when the bandwidth of the transmitted signal is determined primarily 

by the frequency modulation case (A) . In the absence of frequency modulation 

case (B)l Equation (91) reduces to Equation (65). There is no reason to doubt 

that a similar check could be obtained for frequency modulated signals of a 

bandwidth comparable to l/0 jfor which no formal computations were carried 

out in the reverberation limited case. Thus it appears that Equation (91) 

may be regarded as a generalization of Equations (59) and (65), covering 

intermediate values of frequency deviation KaT as well as the extremes represent 

ed by cases (A) and (B). One therefore concludes that the detector responds 

in Identical fashion to reverberation and to ambient noise of the same power 

If ^ft, is indeed the halfwidth of a bandpass filter as suggested earlier, 
then choice of the value given by Equation (90) would, of course, result in some 
modification of the signal spectrum. 
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iatistical properties are then completely determined by Its autocorrelation 

function. 

The above remarks should not be Interpreted to mean that there Is no 

significant difference between reverberation and ambient noise, even when 

conditions 1) and 2) are satisfied. What they do mean Is that any differences 

in performance are due to differences in the input signal to noise ratio. 

Perhaps the most important feature of the input signal to noise ratio in the 

See, for instance, H.L. Van Trees,"Optimum Signal Design and Processing 
for Reverberation Limited Environment'.' IEEE Transactions on Military Electronic 
Vol. MIL 9, pp. 212-229, July, Oct. 1965. 
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and spectral shape as long as the assumptions common to Equations (59) and 

(65) are valid.  These are basically the assumptions permitting the reduction 

of Equation (49) to the first two terms of Equation (50). In physical terms 

they are 

1) No significant percentage of the total reverberation power must 

be contributed by any small collection of scatterers with large 

cross-section (false targets). 

2) The parameter p a combination of looking angle and beam dimensions 
» 

given by Equation (45), must be sufficiently large so that accumulationr 

of unresolvable small scatterers do not contribute a significant per- 

centage of the total reverberation power. Practically speaking, 

this is likely to be a problem only for narrow beams directed very 

close to horizontal and cndfire. 

Requirements 1) and 2) are, of course, precisely the conditions under 

which one can Invoke the Central Limit Theorem and argue that the combined 

returns from many small scatterers form a Gaussian random process whose 

; 

u 

0 
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;. 

ambient noise case is its Inverse dependence on QN [see Equation (86) . If ü 
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tt    Is adjusted In accordance with Equation (90),  I.e.    In accordance with 

the signal bandwidth,  one does not obtain the Improvement of output signal to 

noise ratio with Increased bandwidth (frequency modulation) observed In the 

reverberation limited case.    Thus Equation (60)  I low Input signal to noise 

ratio   now varies Inversely with bandwidth (Ka_) while Equation (61)    high Input 

signal to noise ratio    Is Independent of (Ko.).    The use of narrowband trans- 

mitted signals Is therefore Indicated for ambient noise limited operation, 

provided that Doppler shift considerations (which have been Ignored In this 

analysis) permit the use of a sufficiently narrow filter bandwidth 9.   . 

VII.    Concluding Remarks 

One of the primary purposes of this report Is to provide an analytical 

framework   or future studies of various problems in active sonar detection. 

Some of the specific assumptions used here (stationary target and scatterers, 

independence of location of different scatterers, absence of distortion or 

multipath effects in the return signal)  are clearly unrealistic in many cases 

and will have to be modified In subsequent investigations.    In the meantime 

the detection problem has been anallzed at least under highly idealized conditio 

and insight has been gained into such questions as the conditions under which 

reverberation can be regarded as equivalent to Gaussian ambient noise with a 

known spectrum.    The results of the present analysis should therefore permit 

simplifications of later analyses employing more realistic models of the 

transmission and reverberation mechanisms. 

The first steps towards the generation of a better model should probably 

be the inclusion of Doppler shifts due to source, target, and scattcrer motion 

and recognition of the fact that the target return may not be simply a delayed 

and Doppler shifted replica of the transmitted signal.    Work along these lines 

is now in progress. 
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